Location

2011/09/18 20:25:23 44.568 10.250 4 3.1 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 ENS  2011/09/18 20:25:23:0  44.57   10.25   4.0 3.1 Italy
 
 Stations used:
   GU.MAIM IV.BDI IV.CRMI IV.MSSA IV.PRMA MN.VLC 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 2.32e+21 dyne-cm
  Mw = 3.51 
  Z  = 17 km
  Plane   Strike  Dip  Rake
   NP1      120    82    96
   NP2      265    10    55
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.32e+21     53      37
    N   0.00e+00      6     300
    P  -2.32e+21     37     205

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -6.84e+20
       Mxy    -1.71e+20
       Mxz     1.89e+21
       Myy     3.51e+19
       Myz     1.15e+21
       Mzz     6.49e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----##############----              
              ---######################---           
             --###########################-          
           --###############################-        
          -######################   #########-       
         #--##################### T ##########-      
        #------##################   ###########-     
        ---------###############################     
       #------------############################-    
       ---------------###########################    
       ------------------########################    
       ----------------------####################    
        ------------------------################     
        ----------------------------############     
         -------------------------------#######      
          -----------   ---------------------#       
           ---------- P ---------------------        
             --------   -------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  6.49e+20   1.89e+21  -1.15e+21 
  1.89e+21  -6.84e+20   1.71e+20 
 -1.15e+21   1.71e+20   3.51e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20110918202523/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 265
      DIP = 10
     RAKE = 55
       MW = 3.51
       HS = 17.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 SLU Moment Tensor Solution
 ENS  2011/09/18 20:25:23:0  44.57   10.25   4.0 3.1 Italy
 
 Stations used:
   GU.MAIM IV.BDI IV.CRMI IV.MSSA IV.PRMA MN.VLC 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 2.32e+21 dyne-cm
  Mw = 3.51 
  Z  = 17 km
  Plane   Strike  Dip  Rake
   NP1      120    82    96
   NP2      265    10    55
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.32e+21     53      37
    N   0.00e+00      6     300
    P  -2.32e+21     37     205

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -6.84e+20
       Mxy    -1.71e+20
       Mxz     1.89e+21
       Myy     3.51e+19
       Myz     1.15e+21
       Mzz     6.49e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----##############----              
              ---######################---           
             --###########################-          
           --###############################-        
          -######################   #########-       
         #--##################### T ##########-      
        #------##################   ###########-     
        ---------###############################     
       #------------############################-    
       ---------------###########################    
       ------------------########################    
       ----------------------####################    
        ------------------------################     
        ----------------------------############     
         -------------------------------#######      
          -----------   ---------------------#       
           ---------- P ---------------------        
             --------   -------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  6.49e+20   1.89e+21  -1.15e+21 
  1.89e+21  -6.84e+20   1.71e+20 
 -1.15e+21   1.71e+20   3.51e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20110918202523/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   265    25    70   3.18 0.2718
WVFGRD96    2.0   255    25    60   3.26 0.3205
WVFGRD96    3.0   235    35    30   3.25 0.3428
WVFGRD96    4.0   225    40    15   3.25 0.3665
WVFGRD96    5.0   235    30    30   3.34 0.4117
WVFGRD96    6.0   230    25    20   3.35 0.4495
WVFGRD96    7.0   235    20    25   3.36 0.4906
WVFGRD96    8.0   235    25    25   3.33 0.5320
WVFGRD96    9.0   235    25    25   3.35 0.5667
WVFGRD96   10.0   280    15    70   3.36 0.5946
WVFGRD96   11.0   230    25    20   3.38 0.6185
WVFGRD96   12.0   260    15    50   3.39 0.6430
WVFGRD96   13.0   270    15    60   3.41 0.6602
WVFGRD96   14.0   260    15    50   3.42 0.6730
WVFGRD96   15.0   275    10    65   3.47 0.6816
WVFGRD96   16.0   270    10    60   3.49 0.6881
WVFGRD96   17.0   265    10    55   3.51 0.6892
WVFGRD96   18.0   260    10    50   3.52 0.6846
WVFGRD96   19.0   245    10    35   3.53 0.6728
WVFGRD96   20.0   235    10    25   3.54 0.6614
WVFGRD96   21.0   205    25    -5   3.56 0.6485
WVFGRD96   22.0   190    25   -25   3.57 0.6446
WVFGRD96   23.0   180    25   -40   3.59 0.6407
WVFGRD96   24.0   175    25   -45   3.60 0.6415
WVFGRD96   25.0   175    30   -50   3.62 0.6426
WVFGRD96   26.0   170    30   -60   3.64 0.6465
WVFGRD96   27.0   165    30   -65   3.66 0.6495
WVFGRD96   28.0   165    30   -65   3.67 0.6493
WVFGRD96   29.0   155    30   -75   3.69 0.6473

The best solution is

WVFGRD96   17.0   265    10    55   3.51 0.6892

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Sun Sep 18 16:41:03 CDT 2011

Last Changed 2011/09/18