Location

2011/09/08 15:43:52 44.629 10.231 24.1 3.0 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 ENS  2011/09/08 15:43:52:0  44.63   10.23  24.1 3.0 Italy
 
 Stations used:
   IV.BDI IV.MSSA IV.PRMA IV.ROVR MN.VLC 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 8.81e+20 dyne-cm
  Mw = 3.23 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1       95    71   120
   NP2      215    35    35
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.81e+20     54      42
    N   0.00e+00     28     264
    P  -8.81e+20     20     163

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.45e+20
       Mxy     3.65e+20
       Mxz     5.83e+20
       Myy     7.03e+19
       Myz     1.98e+20
       Mzz     4.75e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------####--              
              ------------################           
             ----------####################          
           ----------########################        
          ---------###########################       
         --------################   ###########      
        --------################# T ############     
        -------##################   ############     
       -------###################################    
       ##-----###################################    
       #####-####################################    
       ######----##############################--    
        #####------------###############--------     
        #####-----------------------------------     
         ####----------------------------------      
          ###---------------------------------       
           ###-------------------------------        
             #-----------------   ---------          
              #---------------- P --------           
                 --------------   -----              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.75e+20   5.83e+20  -1.98e+20 
  5.83e+20  -5.45e+20  -3.65e+20 
 -1.98e+20  -3.65e+20   7.03e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20110908154352/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 215
      DIP = 35
     RAKE = 35
       MW = 3.23
       HS = 18.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 SLU Moment Tensor Solution
 ENS  2011/09/08 15:43:52:0  44.63   10.23  24.1 3.0 Italy
 
 Stations used:
   IV.BDI IV.MSSA IV.PRMA IV.ROVR MN.VLC 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 8.81e+20 dyne-cm
  Mw = 3.23 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1       95    71   120
   NP2      215    35    35
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.81e+20     54      42
    N   0.00e+00     28     264
    P  -8.81e+20     20     163

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.45e+20
       Mxy     3.65e+20
       Mxz     5.83e+20
       Myy     7.03e+19
       Myz     1.98e+20
       Mzz     4.75e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------####--              
              ------------################           
             ----------####################          
           ----------########################        
          ---------###########################       
         --------################   ###########      
        --------################# T ############     
        -------##################   ############     
       -------###################################    
       ##-----###################################    
       #####-####################################    
       ######----##############################--    
        #####------------###############--------     
        #####-----------------------------------     
         ####----------------------------------      
          ###---------------------------------       
           ###-------------------------------        
             #-----------------   ---------          
              #---------------- P --------           
                 --------------   -----              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.75e+20   5.83e+20  -1.98e+20 
  5.83e+20  -5.45e+20  -3.65e+20 
 -1.98e+20  -3.65e+20   7.03e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20110908154352/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    40    85    10   2.81 0.3215
WVFGRD96    2.0   165    45   -75   2.95 0.3443
WVFGRD96    3.0   200    55   -10   2.92 0.3533
WVFGRD96    4.0   200    60    -5   2.94 0.3605
WVFGRD96    5.0   200    50   -10   3.00 0.3576
WVFGRD96    6.0   200    50    -5   3.00 0.3484
WVFGRD96    7.0   195    45    -5   3.01 0.3423
WVFGRD96    8.0   195    50     0   2.99 0.3460
WVFGRD96    9.0   195    50     5   3.01 0.3535
WVFGRD96   10.0   200    50    15   3.03 0.3664
WVFGRD96   11.0   200    45    20   3.05 0.3805
WVFGRD96   12.0   205    45    25   3.07 0.3959
WVFGRD96   13.0   210    40    35   3.10 0.4115
WVFGRD96   14.0   215    40    40   3.13 0.4291
WVFGRD96   15.0   220    35    45   3.18 0.4509
WVFGRD96   16.0   220    35    45   3.20 0.4625
WVFGRD96   17.0   215    35    40   3.22 0.4719
WVFGRD96   18.0   215    35    35   3.23 0.4749
WVFGRD96   19.0   215    35    35   3.24 0.4728
WVFGRD96   20.0   210    40    25   3.25 0.4693
WVFGRD96   21.0   210    50    15   3.26 0.4673
WVFGRD96   22.0   210    55    10   3.28 0.4675
WVFGRD96   23.0   210    60     5   3.29 0.4672
WVFGRD96   24.0   210    60     5   3.31 0.4686
WVFGRD96   25.0   215    70    -5   3.33 0.4699
WVFGRD96   26.0   215    70    -5   3.35 0.4670
WVFGRD96   27.0   215    70   -15   3.34 0.4630
WVFGRD96   28.0   215    70   -15   3.36 0.4608
WVFGRD96   29.0   215    70   -15   3.38 0.4593

The best solution is

WVFGRD96   18.0   215    35    35   3.23 0.4749

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Fri Sep 9 07:45:40 CDT 2011

Last Changed 2011/09/08