Location

INGV Automatic Location

2011/06/19 14:35:34 44.09 10.76 15. 3.6 Italy

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2011/06/19 14:35:34:0  44.09   10.76  15.0 3.6 Italy
 
 Stations used:
   GU.MAIM GU.SC2M IV.ARCI IV.ASQU IV.ATPC IV.BDI IV.BOB 
   IV.CAFI IV.CASP IV.CRE IV.CRMI IV.FNVD IV.FROS IV.GROG 
   IV.MSSA IV.PARC IV.PLMA IV.PRMA IV.SASS MN.VLC 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 4.79e+21 dyne-cm
  Mw = 3.72 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      103    67   -99
   NP2      305    25   -70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.79e+21     21     200
    N   0.00e+00      8     107
    P  -4.79e+21     67     356

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.96e+21
       Mxy     1.38e+21
       Mxz    -3.22e+21
       Myy     4.83e+20
       Myz    -4.43e+20
       Mzz    -3.45e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ###---------------##########           
             #----------------------#######          
           ---------------------------#######        
          ------------------------------######       
         -----------------   -------------#####      
        ------------------ P --------------#####     
        ------------------   ---------------####     
       ##------------------------------------####    
       #####----------------------------------###    
       #######--------------------------------###    
       ###########----------------------------###    
        ##############------------------------##     
        ######################-------------###--     
         #####################################-      
          ####################################       
           ##################################        
             ########   ###################          
              ####### T ##################           
                 ####   ###############              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.45e+21  -3.22e+21   4.43e+20 
 -3.22e+21   2.96e+21  -1.38e+21 
  4.43e+20  -1.38e+21   4.83e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20110619143534/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 305
      DIP = 25
     RAKE = -70
       MW = 3.72
       HS = 8.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2011/06/19 14:35:34:0  44.09   10.76  15.0 3.6 Italy
 
 Stations used:
   GU.MAIM GU.SC2M IV.ARCI IV.ASQU IV.ATPC IV.BDI IV.BOB 
   IV.CAFI IV.CASP IV.CRE IV.CRMI IV.FNVD IV.FROS IV.GROG 
   IV.MSSA IV.PARC IV.PLMA IV.PRMA IV.SASS MN.VLC 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 4.79e+21 dyne-cm
  Mw = 3.72 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      103    67   -99
   NP2      305    25   -70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.79e+21     21     200
    N   0.00e+00      8     107
    P  -4.79e+21     67     356

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.96e+21
       Mxy     1.38e+21
       Mxz    -3.22e+21
       Myy     4.83e+20
       Myz    -4.43e+20
       Mzz    -3.45e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ###---------------##########           
             #----------------------#######          
           ---------------------------#######        
          ------------------------------######       
         -----------------   -------------#####      
        ------------------ P --------------#####     
        ------------------   ---------------####     
       ##------------------------------------####    
       #####----------------------------------###    
       #######--------------------------------###    
       ###########----------------------------###    
        ##############------------------------##     
        ######################-------------###--     
         #####################################-      
          ####################################       
           ##################################        
             ########   ###################          
              ####### T ##################           
                 ####   ###############              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.45e+21  -3.22e+21   4.43e+20 
 -3.22e+21   2.96e+21  -1.38e+21 
  4.43e+20  -1.38e+21   4.83e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20110619143534/index.html
	


First motions and takeoff angles from an elocate run.

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    95    50   -85   3.52 0.3449
WVFGRD96    2.0   100    70   -85   3.62 0.3104
WVFGRD96    3.0   310    10   -60   3.63 0.3973
WVFGRD96    4.0   300    15   -70   3.62 0.4608
WVFGRD96    5.0   300    15   -70   3.74 0.5118
WVFGRD96    6.0   300    20   -70   3.75 0.5535
WVFGRD96    7.0   300    20   -70   3.75 0.5734
WVFGRD96    8.0   305    25   -70   3.72 0.5814
WVFGRD96    9.0   305    25   -70   3.72 0.5799
WVFGRD96   10.0   310    25   -65   3.73 0.5724
WVFGRD96   11.0   320    30   -55   3.74 0.5613
WVFGRD96   12.0   315    25   -55   3.74 0.5475
WVFGRD96   13.0   315    25   -55   3.74 0.5316
WVFGRD96   14.0   320    25   -50   3.75 0.5137
WVFGRD96   15.0   315    25   -55   3.79 0.4981
WVFGRD96   16.0   320    25   -50   3.79 0.4780
WVFGRD96   17.0   315    20   -55   3.80 0.4592
WVFGRD96   18.0    95    55    45   3.81 0.4439
WVFGRD96   19.0    95    55    45   3.82 0.4280
WVFGRD96   20.0   100    50    45   3.82 0.4109
WVFGRD96   21.0   305    20   -70   3.82 0.3959
WVFGRD96   22.0   305    20   -70   3.83 0.3828
WVFGRD96   23.0   305    20   -70   3.83 0.3699
WVFGRD96   24.0   315    25   -60   3.84 0.3594
WVFGRD96   25.0   315    25   -60   3.84 0.3479
WVFGRD96   26.0   310    25   -65   3.84 0.3348
WVFGRD96   27.0   325    30   -55   3.84 0.3226
WVFGRD96   28.0   315    30   -60   3.85 0.3107
WVFGRD96   29.0   325    35   -55   3.85 0.2997

The best solution is

WVFGRD96    8.0   305    25   -70   3.72 0.5814

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Elocate Location

This event had a very good waveform fit. However the analysis of the time shifts required to fit the waveform, indicated that the waveforms would be better fit if the location was moved about 13 km in a direction of 14 degrees from the INGV location. The origin time shift of 0.5 sec earlier is on the order of the Greens function sampling and does not suggest a difference in origin time. Note that the actual shift will be less since the assumed velocities are too high for the region - average velocities of about 2.9 km/s for Love and 2.6 km/sec for Rayleigh would be more appropriate. Using these velocities would suggest a shift of about 11 km.

The program elocate was uses after manually picking arrival times. The nnCIA velocity model, listed below, was used for the location. The detailed processing results are given in the file elocate.txt. The elocate solution is

      RMS Error        :               0.112              sec
      Travel_Time_Table:          nnCIA   
      Latitude         :             44.1397 +-    0.0085 N         0.9449 km
      Longitude        :             10.8199 +-    0.0086 E         0.6829 km
      Depth            :               14.55 +-      2.17 km
      Epoch Time       :      1308494134.000 +-      0.15 sec
      Event Time       :  20110619143534.000 +-      0.15 sec
      Event (OCAL)     :  2011 06 19 14 35 34 000
      HYPO71 Quality   :                  CB
      Gap              :                  98              deg

This solution is 7.3 km from the INGV automatic solution in a direction 41 degrees east of north. This movement is similar to that suggested by the waveform analysis.

This relocation supports the suggestion that the initial INGV solution is biased slightly. If we had used these source coordinates instead fo the INGV automatic solution, the amplitude of the azimuthal delay plot would have been reduced.

To demonstrate the improvement, the elocate coordinates were used for the location and the source inversion was rrun again. The best solution had the parameters

           H(km)  STK   DIP  RAKE    Mw    Fit
WVFGRD96    8.0   110    65   -95   3.75 0.6368
or
            8.0   302    25   -79
This goodness of fit is better than that of the original grid search above which had the solution
           H(km)  STK   DIP  RAKE    Mw    Fit
WVFGRD96    8.0   305    25   -70   3.72 0.5814

The plot based on the time shifts required for the elocate soution is shown in the next figure.

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

As expected, the amplitude of the sine function is smaller. However the waveform shift continue to require a location even farther north.

The analysis of the waveform time shifts indicate the need for a careful relocation of the earthquake. The exact location of the event cannot be determined here because of the lack of complete azimuthal coverage for first arrival location and for source inversion. The simplified analysis performed here used a 1-D velocity model for location and for source inversion.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Tue Jun 21 02:17:10 CDT 2011

Last Changed 2011/06/19