Location

2011/06/04 16:12:00 43.763 11.932 9.9 3.4 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2011/06/04 16:12:00:0  43.76   11.93   9.9 3.4 Italy
 
 Stations used:
   GU.MAIM IV.ATTE IV.BDI IV.CAFI IV.CASP IV.CING IV.FNVD 
   IV.FSSB IV.MGAB IV.MTRZ IV.MURB IV.PESA IV.PIEI IV.SNTG 
   IV.SSFR 
 
 Filtering commands used:
   hp c 0.025 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 2.66e+21 dyne-cm
  Mw = 3.55 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1       56    85   -170
   NP2      325    80    -5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.66e+21      4     190
    N   0.00e+00     79      82
    P  -2.66e+21     11     281

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.48e+21
       Mxy     9.30e+20
       Mxz    -2.52e+20
       Myy    -2.40e+21
       Myz     4.43e+20
       Mzz    -7.93e+19
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ----########################           
             -------#######################          
           -----------#######################        
          -------------#####################--       
         ----------------################------      
        ------------------#############---------     
           -----------------#########-----------     
       - P ------------------#####---------------    
       -   -------------------##-----------------    
       ----------------------###-----------------    
       -------------------#######----------------    
        ---------------###########--------------     
        ------------###############-------------     
         --------###################-----------      
          ----#######################---------       
           ###########################-------        
             ##########################----          
              ##########################--           
                 ######   #############              
                     ## T #########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -7.93e+19  -2.52e+20  -4.43e+20 
 -2.52e+20   2.48e+21  -9.30e+20 
 -4.43e+20  -9.30e+20  -2.40e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20110604161200/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 325
      DIP = 80
     RAKE = -5
       MW = 3.55
       HS = 9.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2011/06/04 16:12:00:0  43.76   11.93   9.9 3.4 Italy
 
 Stations used:
   GU.MAIM IV.ATTE IV.BDI IV.CAFI IV.CASP IV.CING IV.FNVD 
   IV.FSSB IV.MGAB IV.MTRZ IV.MURB IV.PESA IV.PIEI IV.SNTG 
   IV.SSFR 
 
 Filtering commands used:
   hp c 0.025 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 2.66e+21 dyne-cm
  Mw = 3.55 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1       56    85   -170
   NP2      325    80    -5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.66e+21      4     190
    N   0.00e+00     79      82
    P  -2.66e+21     11     281

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.48e+21
       Mxy     9.30e+20
       Mxz    -2.52e+20
       Myy    -2.40e+21
       Myz     4.43e+20
       Mzz    -7.93e+19
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ----########################           
             -------#######################          
           -----------#######################        
          -------------#####################--       
         ----------------################------      
        ------------------#############---------     
           -----------------#########-----------     
       - P ------------------#####---------------    
       -   -------------------##-----------------    
       ----------------------###-----------------    
       -------------------#######----------------    
        ---------------###########--------------     
        ------------###############-------------     
         --------###################-----------      
          ----#######################---------       
           ###########################-------        
             ##########################----          
              ##########################--           
                 ######   #############              
                     ## T #########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -7.93e+19  -2.52e+20  -4.43e+20 
 -2.52e+20   2.48e+21  -9.30e+20 
 -4.43e+20  -9.30e+20  -2.40e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20110604161200/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.025 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   145    90    -5   3.28 0.4204
WVFGRD96    2.0   145    85    -5   3.36 0.5023
WVFGRD96    3.0   325    75     0   3.42 0.5441
WVFGRD96    4.0   325    70     0   3.46 0.5924
WVFGRD96    5.0   320    60   -20   3.53 0.6368
WVFGRD96    6.0   315    65   -35   3.57 0.6616
WVFGRD96    7.0   320    70   -25   3.56 0.6751
WVFGRD96    8.0   325    75    -5   3.54 0.6746
WVFGRD96    9.0   325    80    -5   3.55 0.6760
WVFGRD96   10.0   325    80    -5   3.56 0.6760
WVFGRD96   11.0   325    80     0   3.57 0.6744
WVFGRD96   12.0   325    80     0   3.57 0.6717
WVFGRD96   13.0   325    80     5   3.58 0.6681
WVFGRD96   14.0   325    80     5   3.59 0.6645
WVFGRD96   15.0   325    80     5   3.61 0.6599
WVFGRD96   16.0   325    80     5   3.61 0.6551
WVFGRD96   17.0   325    85    10   3.63 0.6500
WVFGRD96   18.0   325    85    10   3.63 0.6451
WVFGRD96   19.0   325    90    15   3.65 0.6403
WVFGRD96   20.0   325    90    15   3.66 0.6355
WVFGRD96   21.0   325    90    15   3.67 0.6298
WVFGRD96   22.0   325    90    15   3.67 0.6237
WVFGRD96   23.0   325    90    15   3.68 0.6165
WVFGRD96   24.0   325    90    15   3.69 0.6091
WVFGRD96   25.0   325    90    15   3.70 0.6007
WVFGRD96   26.0   325    90    15   3.72 0.5920
WVFGRD96   27.0   325    80    10   3.72 0.5849
WVFGRD96   28.0   325    80    10   3.74 0.5814
WVFGRD96   29.0   325    80     5   3.75 0.5822

The best solution is

WVFGRD96    9.0   325    80    -5   3.55 0.6760

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.025 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Sat Jun 4 14:15:49 CDT 2011

Last Changed 2011/06/04