Location

2011/05/25 00:07:58 43.881 12.015 7.4 3.1 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2011/05/25 00:07:58:0  43.88   12.02   7.4 3.1 Italy
 
 Stations used:
   IV.AOI IV.ARCI IV.ATPC IV.ATTE IV.BDI IV.CING IV.FDMO 
   IV.FIR IV.FNVD IV.FROS IV.FSSB IV.GUMA IV.LATE IV.MAON 
   IV.MCIV IV.MGAB IV.MURB IV.NRCA IV.SASS IV.SNTG IV.SSFR 
   IV.TERO IV.TRIF 
 
 Filtering commands used:
   hp c 0.04 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.01e+21 dyne-cm
  Mw = 3.27 
  Z  = 5 km
  Plane   Strike  Dip  Rake
   NP1       84    76   -133
   NP2      340    45   -20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.01e+21     19     205
    N   0.00e+00     42      97
    P  -1.01e+21     42     314

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.73e+20
       Mxy     6.26e+20
       Mxz    -6.32e+20
       Myy    -1.27e+20
       Myz     2.30e+20
       Mzz    -3.46e+20
                                                     
                                                     
                                                     
                                                     
                     -#############                  
                 ----------############              
              ----------------############           
             -------------------###########          
           -----------------------###########        
          --------   --------------###########       
         --------- P ---------------###########      
        ----------   ----------------###########     
        ------------------------------##########     
       --------------------------------##########    
       --------------------------------########--    
       ---------------------------------##-------    
       ###------------------------######---------    
        ################################--------     
        ################################--------     
         ###############################-------      
          ##############################------       
           ############################------        
             ######   #################----          
              ##### T ################----           
                 ##   ###############--              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.46e+20  -6.32e+20  -2.30e+20 
 -6.32e+20   4.73e+20  -6.26e+20 
 -2.30e+20  -6.26e+20  -1.27e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20110525000758/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 340
      DIP = 45
     RAKE = -20
       MW = 3.27
       HS = 5.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2011/05/25 00:07:58:0  43.88   12.02   7.4 3.1 Italy
 
 Stations used:
   IV.AOI IV.ARCI IV.ATPC IV.ATTE IV.BDI IV.CING IV.FDMO 
   IV.FIR IV.FNVD IV.FROS IV.FSSB IV.GUMA IV.LATE IV.MAON 
   IV.MCIV IV.MGAB IV.MURB IV.NRCA IV.SASS IV.SNTG IV.SSFR 
   IV.TERO IV.TRIF 
 
 Filtering commands used:
   hp c 0.04 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.01e+21 dyne-cm
  Mw = 3.27 
  Z  = 5 km
  Plane   Strike  Dip  Rake
   NP1       84    76   -133
   NP2      340    45   -20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.01e+21     19     205
    N   0.00e+00     42      97
    P  -1.01e+21     42     314

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.73e+20
       Mxy     6.26e+20
       Mxz    -6.32e+20
       Myy    -1.27e+20
       Myz     2.30e+20
       Mzz    -3.46e+20
                                                     
                                                     
                                                     
                                                     
                     -#############                  
                 ----------############              
              ----------------############           
             -------------------###########          
           -----------------------###########        
          --------   --------------###########       
         --------- P ---------------###########      
        ----------   ----------------###########     
        ------------------------------##########     
       --------------------------------##########    
       --------------------------------########--    
       ---------------------------------##-------    
       ###------------------------######---------    
        ################################--------     
        ################################--------     
         ###############################-------      
          ##############################------       
           ############################------        
             ######   #################----          
              ##### T ################----           
                 ##   ###############--              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.46e+20  -6.32e+20  -2.30e+20 
 -6.32e+20   4.73e+20  -6.26e+20 
 -2.30e+20  -6.26e+20  -1.27e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20110525000758/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.04 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   345    55   -15   3.10 0.2991
WVFGRD96    2.0   340    35   -20   3.22 0.3216
WVFGRD96    3.0   340    40   -20   3.20 0.3419
WVFGRD96    4.0   345    50   -10   3.19 0.3449
WVFGRD96    5.0   340    45   -20   3.27 0.3464
WVFGRD96    6.0   270    35    55   3.32 0.3357
WVFGRD96    7.0   260    45    50   3.30 0.3390
WVFGRD96    8.0   245    50    40   3.24 0.3294
WVFGRD96    9.0   240    50    35   3.24 0.3183
WVFGRD96   10.0   240    50    35   3.24 0.3059
WVFGRD96   11.0   240    50    35   3.25 0.2926
WVFGRD96   12.0   240    50    30   3.26 0.2805
WVFGRD96   13.0   240    50    30   3.27 0.2698
WVFGRD96   14.0   240    45    30   3.27 0.2588
WVFGRD96   15.0   240    45    30   3.31 0.2488
WVFGRD96   16.0   240    45    25   3.32 0.2390
WVFGRD96   17.0   240    45    25   3.32 0.2303
WVFGRD96   18.0   240    45    20   3.34 0.2218
WVFGRD96   19.0   240    45    20   3.34 0.2141
WVFGRD96   20.0   240    45    15   3.35 0.2069
WVFGRD96   21.0   240    45    15   3.36 0.2010
WVFGRD96   22.0   250    65   -15   3.38 0.1969
WVFGRD96   23.0   250    70   -20   3.39 0.1957
WVFGRD96   24.0   250    70   -20   3.40 0.1959
WVFGRD96   25.0   250    70   -20   3.41 0.1967
WVFGRD96   26.0   250    70   -20   3.42 0.1964
WVFGRD96   27.0   250    70   -20   3.44 0.1955
WVFGRD96   28.0   250    70   -15   3.46 0.1960
WVFGRD96   29.0   250    70   -15   3.48 0.2001

The best solution is

WVFGRD96    5.0   340    45   -20   3.27 0.3464

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.04 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Fri May 27 03:01:53 CDT 2011

Last Changed 2011/05/25