Location

2011/04/12 03:32:55 41.663 16.117 10.0 3.90 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2011/04/12 03:32:55:0  41.66   16.12  10.0 3.9 Italy
 
 Stations used:
   BA.PZUN GE.MATE IV.ACER IV.BULG IV.FRES IV.GATE IV.MOCO 
   IV.MRVN IV.MSAG IV.PALZ IV.SGRT IV.SGTA IV.SIRI IV.SNAL 
   IV.VULT MN.CUC 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 3.27e+21 dyne-cm
  Mw = 3.61 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1       67    51   124
   NP2      200    50    55
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.27e+21     64      43
    N   0.00e+00     26     224
    P  -3.27e+21      1     134

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.23e+21
       Mxy     1.95e+21
       Mxz     9.75e+20
       Myy    -1.41e+21
       Myz     8.50e+20
       Mzz     2.64e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 -------------#########              
              -------------###############           
             ------------##################          
           ------------######################        
          ------------########################       
         ------------##########################      
        ------------###########   #############-     
        -----------############ T ############--     
       -----------#############   ###########----    
       -----------##########################-----    
       ----------##########################------    
       ----------########################--------    
        ---------######################---------     
        ---------####################-----------     
         --------################--------------      
          ###----###########------------------       
           ######------------------------   -        
             #####----------------------- P          
              #####----------------------            
                 ###-------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.64e+21   9.75e+20  -8.50e+20 
  9.75e+20  -1.23e+21  -1.95e+21 
 -8.50e+20  -1.95e+21  -1.41e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20110412033255/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 200
      DIP = 50
     RAKE = 55
       MW = 3.61
       HS = 9.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2011/04/12 03:32:55:0  41.66   16.12  10.0 3.9 Italy
 
 Stations used:
   BA.PZUN GE.MATE IV.ACER IV.BULG IV.FRES IV.GATE IV.MOCO 
   IV.MRVN IV.MSAG IV.PALZ IV.SGRT IV.SGTA IV.SIRI IV.SNAL 
   IV.VULT MN.CUC 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 3.27e+21 dyne-cm
  Mw = 3.61 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1       67    51   124
   NP2      200    50    55
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.27e+21     64      43
    N   0.00e+00     26     224
    P  -3.27e+21      1     134

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.23e+21
       Mxy     1.95e+21
       Mxz     9.75e+20
       Myy    -1.41e+21
       Myz     8.50e+20
       Mzz     2.64e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 -------------#########              
              -------------###############           
             ------------##################          
           ------------######################        
          ------------########################       
         ------------##########################      
        ------------###########   #############-     
        -----------############ T ############--     
       -----------#############   ###########----    
       -----------##########################-----    
       ----------##########################------    
       ----------########################--------    
        ---------######################---------     
        ---------####################-----------     
         --------################--------------      
          ###----###########------------------       
           ######------------------------   -        
             #####----------------------- P          
              #####----------------------            
                 ###-------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.64e+21   9.75e+20  -8.50e+20 
  9.75e+20  -1.23e+21  -1.95e+21 
 -8.50e+20  -1.95e+21  -1.41e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20110412033255/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   315    40   -90   3.39 0.3662
WVFGRD96    2.0   325    30   -75   3.48 0.3370
WVFGRD96    3.0   320    75    30   3.47 0.3423
WVFGRD96    4.0   145    75    45   3.49 0.3788
WVFGRD96    5.0   145    75    55   3.58 0.4161
WVFGRD96    6.0   195    50    50   3.60 0.4688
WVFGRD96    7.0   200    50    55   3.62 0.5187
WVFGRD96    8.0   200    50    55   3.60 0.5537
WVFGRD96    9.0   200    50    55   3.61 0.5627
WVFGRD96   10.0   200    50    55   3.62 0.5617
WVFGRD96   11.0   200    50    55   3.62 0.5536
WVFGRD96   12.0   200    50    55   3.63 0.5409
WVFGRD96   13.0   200    50    55   3.64 0.5248
WVFGRD96   14.0   200    50    55   3.65 0.5086
WVFGRD96   15.0   195    50    50   3.68 0.4908
WVFGRD96   16.0   195    50    50   3.68 0.4693
WVFGRD96   17.0   200    45    55   3.68 0.4465
WVFGRD96   18.0   220    35    85   3.69 0.4285
WVFGRD96   19.0   230    35   100   3.70 0.4130
WVFGRD96   20.0    35    55    80   3.70 0.3993
WVFGRD96   21.0    35    55    80   3.71 0.3869
WVFGRD96   22.0    25    60    65   3.72 0.3741
WVFGRD96   23.0    25    60    70   3.73 0.3640
WVFGRD96   24.0   170    65   -45   3.70 0.3604
WVFGRD96   25.0   170    65   -45   3.71 0.3577
WVFGRD96   26.0   170    65   -45   3.72 0.3539
WVFGRD96   27.0   170    65   -45   3.73 0.3511
WVFGRD96   28.0   170    65   -45   3.74 0.3491
WVFGRD96   29.0   165    60   -45   3.76 0.3463

The best solution is

WVFGRD96    9.0   200    50    55   3.61 0.5627

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Tue Apr 12 07:53:08 CDT 2011

Last Changed 2011/04/12