Location

2010/12/06 10:32:15 42.795 13.012 8.9 3.40 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2010/12/06 10:32:15:0  42.79   13.01   8.9 3.4 Italy
 
 Stations used:
   IV.ARVD IV.ATPC IV.CAMP IV.CESI IV.CESX IV.CING IV.FDMO 
   IV.FIAM IV.GUAR IV.GUMA IV.INTR IV.MTCE IV.MURB IV.OFFI 
   IV.PARC IV.PIEI IV.SNTG IV.TOLF 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.48e+21 dyne-cm
  Mw = 3.38 
  Z  = 6 km
  Plane   Strike  Dip  Rake
   NP1      307    50   -113
   NP2      160    45   -65
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.48e+21      3      53
    N   0.00e+00     17     322
    P  -1.48e+21     72     151

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.41e+20
       Mxy     7.69e+20
       Mxz     4.15e+20
       Myy     9.00e+20
       Myz    -1.51e+20
       Mzz    -1.34e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 --####################              
              ----########################           
             ----##########################          
           ######----------################ T        
          ######---------------############          
         #######------------------#############      
        ########--------------------############     
        ########----------------------##########     
       #########-----------------------##########    
       #########-------------------------########    
       ##########-------------------------#######    
       ##########------------   -----------######    
        ##########----------- P ------------####     
        ###########----------   ------------####     
         ###########-------------------------##      
          ###########------------------------#       
           ###########-----------------------        
             ###########-------------------          
              ############----------------           
                 ############----------              
                     #############-                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.34e+21   4.15e+20   1.51e+20 
  4.15e+20   4.41e+20  -7.69e+20 
  1.51e+20  -7.69e+20   9.00e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20101206103215/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 160
      DIP = 45
     RAKE = -65
       MW = 3.38
       HS = 6.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2010/12/06 10:32:15:0  42.79   13.01   8.9 3.4 Italy
 
 Stations used:
   IV.ARVD IV.ATPC IV.CAMP IV.CESI IV.CESX IV.CING IV.FDMO 
   IV.FIAM IV.GUAR IV.GUMA IV.INTR IV.MTCE IV.MURB IV.OFFI 
   IV.PARC IV.PIEI IV.SNTG IV.TOLF 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.48e+21 dyne-cm
  Mw = 3.38 
  Z  = 6 km
  Plane   Strike  Dip  Rake
   NP1      307    50   -113
   NP2      160    45   -65
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.48e+21      3      53
    N   0.00e+00     17     322
    P  -1.48e+21     72     151

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.41e+20
       Mxy     7.69e+20
       Mxz     4.15e+20
       Myy     9.00e+20
       Myz    -1.51e+20
       Mzz    -1.34e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 --####################              
              ----########################           
             ----##########################          
           ######----------################ T        
          ######---------------############          
         #######------------------#############      
        ########--------------------############     
        ########----------------------##########     
       #########-----------------------##########    
       #########-------------------------########    
       ##########-------------------------#######    
       ##########------------   -----------######    
        ##########----------- P ------------####     
        ###########----------   ------------####     
         ###########-------------------------##      
          ###########------------------------#       
           ###########-----------------------        
             ###########-------------------          
              ############----------------           
                 ############----------              
                     #############-                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.34e+21   4.15e+20   1.51e+20 
  4.15e+20   4.41e+20  -7.69e+20 
  1.51e+20  -7.69e+20   9.00e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20101206103215/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0     5    65   -15   3.05 0.3399
WVFGRD96    2.0   185    40   -10   3.18 0.3792
WVFGRD96    3.0   180    45   -20   3.19 0.4174
WVFGRD96    4.0   175    50   -35   3.22 0.4418
WVFGRD96    5.0   160    40   -60   3.35 0.4785
WVFGRD96    6.0   160    45   -65   3.38 0.5036
WVFGRD96    7.0   165    50   -55   3.36 0.4963
WVFGRD96    8.0   170    60   -45   3.32 0.4654
WVFGRD96    9.0   170    60   -45   3.32 0.4512
WVFGRD96   10.0    -5    70   -45   3.36 0.4415
WVFGRD96   11.0     0    75   -35   3.36 0.4288
WVFGRD96   12.0     0    70   -35   3.37 0.4171
WVFGRD96   13.0     0    75   -35   3.38 0.4049
WVFGRD96   14.0   190    75    25   3.38 0.3971
WVFGRD96   15.0   190    75    25   3.39 0.3877
WVFGRD96   16.0   190    70    25   3.39 0.3808
WVFGRD96   17.0    10    70    20   3.39 0.3737
WVFGRD96   18.0    10    70    20   3.40 0.3685
WVFGRD96   19.0    10    70    20   3.40 0.3630
WVFGRD96   20.0    10    75    25   3.41 0.3604
WVFGRD96   21.0    10    75    25   3.42 0.3580
WVFGRD96   22.0    10    75    25   3.42 0.3560
WVFGRD96   23.0    10    75    25   3.43 0.3545
WVFGRD96   24.0    10    75    25   3.44 0.3522
WVFGRD96   25.0    10    75    25   3.44 0.3505
WVFGRD96   26.0    10    75    25   3.45 0.3475
WVFGRD96   27.0   185    80   -20   3.46 0.3491
WVFGRD96   28.0   185    75   -15   3.48 0.3497
WVFGRD96   29.0   185    75   -15   3.50 0.3505

The best solution is

WVFGRD96    6.0   160    45   -65   3.38 0.5036

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Mon Dec 6 06:01:27 CST 2010

Last Changed 2010/12/06