Location

2009/09/24 16:14:57 42.453 13.330 4.1 9.7 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2009/09/24 16:14:57:0  42.45   13.33   4.1 9.7 Italy
 
 Stations used:
   IV.AOI IV.ARVD IV.CAFI IV.CAFR IV.CERA IV.CESX IV.CING 
   IV.CRE IV.FAGN IV.FDMO IV.FIAM IV.FSSB IV.GIUL IV.GUMA 
   IV.INTR IV.LATE IV.LAV9 IV.LNSS IV.LPEL IV.MA9 IV.MAON 
   IV.MELA IV.MGAB IV.MIDA IV.MTCE IV.NRCA IV.OFFI IV.PARC 
   IV.PESA IV.PIEI IV.POFI IV.RDP IV.RMP IV.RNI2 IV.RSM 
   IV.SACS IV.SAMA IV.TERO IV.TOLF IV.TRIV IV.VVLD 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 5.69e+21 dyne-cm
  Mw = 3.77 
  Z  = 13 km
  Plane   Strike  Dip  Rake
   NP1      344    47   -105
   NP2      185    45   -75
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.69e+21      1      84
    N   0.00e+00     11     354
    P  -5.69e+21     79     180

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.39e+20
       Mxy     5.48e+20
       Mxz     1.04e+21
       Myy     5.63e+21
       Myz     9.07e+19
       Mzz    -5.49e+21
                                                     
                                                     
                                                     
                                                     
                     ###---########                  
                 ########---###########              
              #########--------###########           
             ########-----------###########          
           #########--------------###########        
          #########----------------###########       
         #########------------------###########      
        ##########-------------------###########     
        #########---------------------#########      
       ##########---------------------######### T    
       ##########----------------------########      
       ##########----------   ---------##########    
       ##########---------- P ---------##########    
        #########----------   ---------#########     
        #########----------------------#########     
         #########---------------------########      
          ########---------------------#######       
           ########-------------------#######        
             #######------------------#####          
              #######----------------#####           
                 #####--------------###              
                     ###----------#                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.49e+21   1.04e+21  -9.07e+19 
  1.04e+21  -1.39e+20  -5.48e+20 
 -9.07e+19  -5.48e+20   5.63e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090924161457/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 185
      DIP = 45
     RAKE = -75
       MW = 3.77
       HS = 13.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2009/09/24 16:14:57:0  42.45   13.33   4.1 9.7 Italy
 
 Stations used:
   IV.AOI IV.ARVD IV.CAFI IV.CAFR IV.CERA IV.CESX IV.CING 
   IV.CRE IV.FAGN IV.FDMO IV.FIAM IV.FSSB IV.GIUL IV.GUMA 
   IV.INTR IV.LATE IV.LAV9 IV.LNSS IV.LPEL IV.MA9 IV.MAON 
   IV.MELA IV.MGAB IV.MIDA IV.MTCE IV.NRCA IV.OFFI IV.PARC 
   IV.PESA IV.PIEI IV.POFI IV.RDP IV.RMP IV.RNI2 IV.RSM 
   IV.SACS IV.SAMA IV.TERO IV.TOLF IV.TRIV IV.VVLD 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 5.69e+21 dyne-cm
  Mw = 3.77 
  Z  = 13 km
  Plane   Strike  Dip  Rake
   NP1      344    47   -105
   NP2      185    45   -75
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.69e+21      1      84
    N   0.00e+00     11     354
    P  -5.69e+21     79     180

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.39e+20
       Mxy     5.48e+20
       Mxz     1.04e+21
       Myy     5.63e+21
       Myz     9.07e+19
       Mzz    -5.49e+21
                                                     
                                                     
                                                     
                                                     
                     ###---########                  
                 ########---###########              
              #########--------###########           
             ########-----------###########          
           #########--------------###########        
          #########----------------###########       
         #########------------------###########      
        ##########-------------------###########     
        #########---------------------#########      
       ##########---------------------######### T    
       ##########----------------------########      
       ##########----------   ---------##########    
       ##########---------- P ---------##########    
        #########----------   ---------#########     
        #########----------------------#########     
         #########---------------------########      
          ########---------------------#######       
           ########-------------------#######        
             #######------------------#####          
              #######----------------#####           
                 #####--------------###              
                     ###----------#                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.49e+21   1.04e+21  -9.07e+19 
  1.04e+21  -1.39e+20  -5.48e+20 
 -9.07e+19  -5.48e+20   5.63e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090924161457/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   260    45    90   3.46 0.3063
WVFGRD96    2.0    80    40    85   3.53 0.2915
WVFGRD96    3.0    15    90    45   3.52 0.2748
WVFGRD96    4.0   215    70   -40   3.52 0.3045
WVFGRD96    5.0     5    75   -75   3.66 0.3333
WVFGRD96    6.0    -5    65   -90   3.69 0.3833
WVFGRD96    7.0   170    30   -95   3.71 0.4345
WVFGRD96    8.0   190    45   -70   3.70 0.4904
WVFGRD96    9.0   190    45   -70   3.72 0.5260
WVFGRD96   10.0   185    45   -75   3.73 0.5519
WVFGRD96   11.0   185    45   -75   3.74 0.5699
WVFGRD96   12.0   185    45   -75   3.76 0.5810
WVFGRD96   13.0   185    45   -75   3.77 0.5857
WVFGRD96   14.0   185    40   -75   3.78 0.5847
WVFGRD96   15.0   185    40   -75   3.82 0.5842
WVFGRD96   16.0   190    40   -70   3.82 0.5757
WVFGRD96   17.0   195    40   -65   3.83 0.5638
WVFGRD96   18.0   195    40   -60   3.84 0.5500
WVFGRD96   19.0   200    40   -55   3.84 0.5340
WVFGRD96   20.0   200    40   -55   3.85 0.5158
WVFGRD96   21.0   195    35   -60   3.86 0.4964
WVFGRD96   22.0   195    35   -60   3.86 0.4749
WVFGRD96   23.0   200    40   -55   3.86 0.4511
WVFGRD96   24.0   200    40   -50   3.86 0.4275
WVFGRD96   25.0   205    45   -45   3.86 0.4037
WVFGRD96   26.0   210    50   -40   3.86 0.3814
WVFGRD96   27.0   210    60   -45   3.86 0.3616
WVFGRD96   28.0   190    70   -60   3.88 0.3492
WVFGRD96   29.0   190    70   -60   3.89 0.3420

The best solution is

WVFGRD96   13.0   185    45   -75   3.77 0.5857

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Thu Sep 24 12:36:42 CDT 2009

Last Changed 2009/09/24