Location

2009/06/23 00:41:56 42.441 13.369 15.6 3.80 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2009/06/23 00:41:56:0  42.44   13.37  15.6 3.8 Italy
 
 Stations used:
   IV.AOI IV.ASSB IV.BSSO IV.CERA IV.CERT IV.CESI IV.FDMO 
   IV.FIAM IV.FSSB IV.GUAR IV.GUMA IV.LPEL IV.MIDA IV.MNS 
   IV.MTCE IV.MURB IV.NRCA IV.OFFI IV.PIEI IV.RDP IV.RMP 
   IV.SACS IV.SAMA IV.TERO IV.TRIV MN.AQU 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 5.31e+21 dyne-cm
  Mw = 3.75 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      309    83   -103
   NP2      190    15   -30
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.31e+21     36      51
    N   0.00e+00     13     311
    P  -5.31e+21     51     205

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.67e+20
       Mxy     8.91e+20
       Mxz     3.97e+21
       Myy     1.69e+21
       Myz     3.04e+21
       Mzz    -1.33e+21
                                                     
                                                     
                                                     
                                                     
                     ---###########                  
                 ---###################              
              ----########################           
             ---###########################          
           ##################################        
          ###----####################   ######       
         ###--------################# T #######      
        ###------------##############   ########     
        ###--------------#######################     
       ###------------------#####################    
       ###--------------------###################    
       ###----------------------#################    
       ###------------------------###############    
        ##--------------------------############     
        ###------------   ------------##########     
         ###----------- P --------------#######      
          ##-----------   ----------------####       
           ##------------------------------##        
             ##----------------------------          
              ##--------------------------           
                 ##--------------------              
                     #-------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.33e+21   3.97e+21  -3.04e+21 
  3.97e+21  -3.67e+20  -8.91e+20 
 -3.04e+21  -8.91e+20   1.69e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090623004156/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 190
      DIP = 15
     RAKE = -30
       MW = 3.75
       HS = 10.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2009/06/23 00:41:56:0  42.44   13.37  15.6 3.8 Italy
 
 Stations used:
   IV.AOI IV.ASSB IV.BSSO IV.CERA IV.CERT IV.CESI IV.FDMO 
   IV.FIAM IV.FSSB IV.GUAR IV.GUMA IV.LPEL IV.MIDA IV.MNS 
   IV.MTCE IV.MURB IV.NRCA IV.OFFI IV.PIEI IV.RDP IV.RMP 
   IV.SACS IV.SAMA IV.TERO IV.TRIV MN.AQU 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 5.31e+21 dyne-cm
  Mw = 3.75 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      309    83   -103
   NP2      190    15   -30
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.31e+21     36      51
    N   0.00e+00     13     311
    P  -5.31e+21     51     205

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.67e+20
       Mxy     8.91e+20
       Mxz     3.97e+21
       Myy     1.69e+21
       Myz     3.04e+21
       Mzz    -1.33e+21
                                                     
                                                     
                                                     
                                                     
                     ---###########                  
                 ---###################              
              ----########################           
             ---###########################          
           ##################################        
          ###----####################   ######       
         ###--------################# T #######      
        ###------------##############   ########     
        ###--------------#######################     
       ###------------------#####################    
       ###--------------------###################    
       ###----------------------#################    
       ###------------------------###############    
        ##--------------------------############     
        ###------------   ------------##########     
         ###----------- P --------------#######      
          ##-----------   ----------------####       
           ##------------------------------##        
             ##----------------------------          
              ##--------------------------           
                 ##--------------------              
                     #-------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.33e+21   3.97e+21  -3.04e+21 
  3.97e+21  -3.67e+20  -8.91e+20 
 -3.04e+21  -8.91e+20   1.69e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090623004156/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   140    50   -90   3.53 0.4098
WVFGRD96    1.0   140    55   -90   3.57 0.3574
WVFGRD96    2.0   180    15   -35   3.66 0.3179
WVFGRD96    3.0   195    15   -25   3.65 0.4382
WVFGRD96    4.0   195    15   -25   3.63 0.5101
WVFGRD96    5.0   195    15   -25   3.75 0.5679
WVFGRD96    6.0   190    15   -30   3.75 0.6207
WVFGRD96    7.0   195    15   -25   3.76 0.6547
WVFGRD96    8.0   190    15   -35   3.73 0.6734
WVFGRD96    9.0   190    15   -30   3.74 0.6817
WVFGRD96   10.0   190    15   -30   3.75 0.6833
WVFGRD96   11.0   195    15   -25   3.76 0.6785
WVFGRD96   12.0   195    15   -25   3.76 0.6694
WVFGRD96   13.0   200    15   -20   3.77 0.6573
WVFGRD96   14.0   205    15   -15   3.78 0.6437
WVFGRD96   15.0   205    15   -15   3.83 0.6281
WVFGRD96   16.0   200    15   -20   3.84 0.6093
WVFGRD96   17.0   205    15   -10   3.84 0.5897
WVFGRD96   18.0   205    15   -10   3.85 0.5702
WVFGRD96   19.0   205    15   -10   3.86 0.5498
WVFGRD96   20.0   205    15   -10   3.87 0.5299
WVFGRD96   21.0   205    15   -10   3.88 0.5106
WVFGRD96   22.0   205    15   -10   3.89 0.4926
WVFGRD96   23.0   275    20    55   3.90 0.4757
WVFGRD96   24.0   280    20    60   3.91 0.4665
WVFGRD96   25.0   265    20    45   3.91 0.4610
WVFGRD96   26.0   275    20    55   3.92 0.4541
WVFGRD96   27.0   275    15    55   3.93 0.4474
WVFGRD96   28.0   270    15    55   3.93 0.4411
WVFGRD96   29.0   265    20    50   3.93 0.4351

The best solution is

WVFGRD96   10.0   190    15   -30   3.75 0.6833

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Mon Jun 22 21:25:09 CDT 2009

Last Changed 2009/06/23