Location

2009/04/19 12:39:50 44.727 7.845 40.2 3.90 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2009/04/19 12:39:50:0  44.73    7.84  40.2 3.9 Italy
 
 Stations used:
   IG.FINB IG.LSD IG.PCP IG.PZZ IG.RORO IV.DOI IV.MONC IV.QLNO 
   IV.RSP IV.STV 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 4.32e+21 dyne-cm
  Mw = 3.69 
  Z  = 33 km
  Plane   Strike  Dip  Rake
   NP1      165    80   -30
   NP2      261    61   -168
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.32e+21     13     216
    N   0.00e+00     59     328
    P  -4.32e+21     28     119

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.89e+21
       Mxy     3.37e+21
       Mxz     1.02e+20
       Myy    -1.15e+21
       Myz    -2.13e+21
       Mzz    -7.38e+20
                                                     
                                                     
                                                     
                                                     
                     --############                  
                 ------################              
              ---------###################           
             ----------####################          
           ------------######################        
          -------------#######################       
         ---------------#######################      
        ---------------#-------------------#####     
        ---------#######-----------------------#     
       -------###########------------------------    
       ----##############------------------------    
       --#################-----------------------    
       -##################-----------------------    
        ###################-------------   -----     
        ###################------------- P -----     
         ###################------------   ----      
          ###################-----------------       
           ####   ###########----------------        
             ## T ############-------------          
              #   #############-----------           
                 ###############-------              
                     ############--                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -7.38e+20   1.02e+20   2.13e+21 
  1.02e+20   1.89e+21  -3.37e+21 
  2.13e+21  -3.37e+21  -1.15e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090419123950/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 165
      DIP = 80
     RAKE = -30
       MW = 3.69
       HS = 33.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2009/04/19 12:39:50:0  44.73    7.84  40.2 3.9 Italy
 
 Stations used:
   IG.FINB IG.LSD IG.PCP IG.PZZ IG.RORO IV.DOI IV.MONC IV.QLNO 
   IV.RSP IV.STV 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 4.32e+21 dyne-cm
  Mw = 3.69 
  Z  = 33 km
  Plane   Strike  Dip  Rake
   NP1      165    80   -30
   NP2      261    61   -168
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.32e+21     13     216
    N   0.00e+00     59     328
    P  -4.32e+21     28     119

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.89e+21
       Mxy     3.37e+21
       Mxz     1.02e+20
       Myy    -1.15e+21
       Myz    -2.13e+21
       Mzz    -7.38e+20
                                                     
                                                     
                                                     
                                                     
                     --############                  
                 ------################              
              ---------###################           
             ----------####################          
           ------------######################        
          -------------#######################       
         ---------------#######################      
        ---------------#-------------------#####     
        ---------#######-----------------------#     
       -------###########------------------------    
       ----##############------------------------    
       --#################-----------------------    
       -##################-----------------------    
        ###################-------------   -----     
        ###################------------- P -----     
         ###################------------   ----      
          ###################-----------------       
           ####   ###########----------------        
             ## T ############-------------          
              #   #############-----------           
                 ###############-------              
                     ############--                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -7.38e+20   1.02e+20   2.13e+21 
  1.02e+20   1.89e+21  -3.37e+21 
  2.13e+21  -3.37e+21  -1.15e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090419123950/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    90    75    10   2.95 0.1830
WVFGRD96    1.0   270    75     0   2.99 0.2018
WVFGRD96    2.0    90    80    10   3.15 0.2814
WVFGRD96    3.0    90    80    10   3.23 0.3160
WVFGRD96    4.0    90    80     5   3.27 0.3314
WVFGRD96    5.0    85    75   -15   3.30 0.3354
WVFGRD96    6.0     0    85     5   3.35 0.3406
WVFGRD96    7.0    -5    90     0   3.37 0.3638
WVFGRD96    8.0   175    90    -5   3.42 0.3910
WVFGRD96    9.0   175    80     0   3.45 0.3983
WVFGRD96   10.0   175    80    -5   3.47 0.4049
WVFGRD96   11.0   175    80    -5   3.49 0.4093
WVFGRD96   12.0   175    80    -5   3.51 0.4117
WVFGRD96   13.0   175    80   -10   3.53 0.4126
WVFGRD96   14.0   170    75   -20   3.54 0.4173
WVFGRD96   15.0   170    75   -20   3.55 0.4236
WVFGRD96   16.0   170    75   -20   3.57 0.4295
WVFGRD96   17.0   165    75   -25   3.57 0.4361
WVFGRD96   18.0   165    75   -25   3.58 0.4423
WVFGRD96   19.0   165    75   -25   3.59 0.4496
WVFGRD96   20.0   165    75   -25   3.60 0.4562
WVFGRD96   21.0   165    75   -25   3.61 0.4612
WVFGRD96   22.0   165    75   -30   3.63 0.4676
WVFGRD96   23.0   165    75   -30   3.64 0.4741
WVFGRD96   24.0   165    75   -30   3.64 0.4784
WVFGRD96   25.0   165    75   -30   3.65 0.4857
WVFGRD96   26.0   165    75   -30   3.66 0.4913
WVFGRD96   27.0   165    80   -30   3.66 0.4982
WVFGRD96   28.0   165    80   -30   3.67 0.5042
WVFGRD96   29.0   165    80   -30   3.67 0.5110
WVFGRD96   30.0   165    80   -30   3.68 0.5148
WVFGRD96   31.0   165    80   -30   3.68 0.5195
WVFGRD96   32.0   165    80   -30   3.68 0.5193
WVFGRD96   33.0   165    80   -30   3.69 0.5201
WVFGRD96   34.0   165    80   -30   3.69 0.5181
WVFGRD96   35.0   165    80   -30   3.70 0.5152
WVFGRD96   36.0   165    80   -30   3.70 0.5122
WVFGRD96   37.0   165    80   -30   3.71 0.5071
WVFGRD96   38.0   165    80   -30   3.71 0.5055
WVFGRD96   39.0   165    80   -25   3.72 0.5050
WVFGRD96   40.0   165    80   -35   3.78 0.5046

The best solution is

WVFGRD96   33.0   165    80   -30   3.69 0.5201

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Tue Apr 21 19:28:57 CDT 2009

Last Changed 2009/04/19