Location

2009/04/18 09:05:56 42.441 13.361 14.6 3.80 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2009/04/18 09:05:56:0  42.44   13.36  14.6 3.8 Italy
 
 Stations used:
   IV.AOI IV.ARVD IV.ASSB IV.BSSO IV.CAFI IV.CAFR IV.CERA 
   IV.CERT IV.CESI IV.CESX IV.CIGN IV.CING IV.FAGN IV.FDMO 
   IV.FIAM IV.FRES IV.FSSB IV.GIUL IV.GUAR IV.GUMA IV.INTR 
   IV.LATE IV.LPEL IV.MAON IV.MGAB IV.MIDA IV.MNS IV.MODR 
   IV.MTCE IV.MURB IV.NRCA IV.OFFI IV.PARC IV.PIEI IV.POFI 
   IV.RMP IV.RNI2 IV.SACS IV.SGG IV.TERO IV.TOLF IV.TRIV 
   IV.VAGA IV.VVLD MN.AQU 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 4.62e+21 dyne-cm
  Mw = 3.71 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      306    69   -112
   NP2      175    30   -45
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.62e+21     21      53
    N   0.00e+00     21     314
    P  -4.62e+21     60     184

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.05e+20
       Mxy     1.86e+21
       Mxz     2.96e+21
       Myy     2.53e+21
       Myz     1.38e+21
       Mzz    -2.83e+21
                                                     
                                                     
                                                     
                                                     
                     ---###########                  
                 ----##################              
              -----#######################           
             ----##########################          
           ###--########################   ##        
          #####------################### T ###       
         ######----------###############   ####      
        ######--------------####################     
        ######-----------------#################     
       ######--------------------################    
       ######----------------------##############    
       ######------------------------############    
       #######-------------------------##########    
        ######---------------------------#######     
        ######------------   -------------######     
         ######----------- P --------------####      
          ######----------   ---------------##       
           ######----------------------------        
             #####-------------------------          
              ######----------------------           
                 ######----------------              
                     #####---------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.83e+21   2.96e+21  -1.38e+21 
  2.96e+21   3.05e+20  -1.86e+21 
 -1.38e+21  -1.86e+21   2.53e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090418090556/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 175
      DIP = 30
     RAKE = -45
       MW = 3.71
       HS = 10.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2009/04/18 09:05:56:0  42.44   13.36  14.6 3.8 Italy
 
 Stations used:
   IV.AOI IV.ARVD IV.ASSB IV.BSSO IV.CAFI IV.CAFR IV.CERA 
   IV.CERT IV.CESI IV.CESX IV.CIGN IV.CING IV.FAGN IV.FDMO 
   IV.FIAM IV.FRES IV.FSSB IV.GIUL IV.GUAR IV.GUMA IV.INTR 
   IV.LATE IV.LPEL IV.MAON IV.MGAB IV.MIDA IV.MNS IV.MODR 
   IV.MTCE IV.MURB IV.NRCA IV.OFFI IV.PARC IV.PIEI IV.POFI 
   IV.RMP IV.RNI2 IV.SACS IV.SGG IV.TERO IV.TOLF IV.TRIV 
   IV.VAGA IV.VVLD MN.AQU 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 4.62e+21 dyne-cm
  Mw = 3.71 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      306    69   -112
   NP2      175    30   -45
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.62e+21     21      53
    N   0.00e+00     21     314
    P  -4.62e+21     60     184

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.05e+20
       Mxy     1.86e+21
       Mxz     2.96e+21
       Myy     2.53e+21
       Myz     1.38e+21
       Mzz    -2.83e+21
                                                     
                                                     
                                                     
                                                     
                     ---###########                  
                 ----##################              
              -----#######################           
             ----##########################          
           ###--########################   ##        
          #####------################### T ###       
         ######----------###############   ####      
        ######--------------####################     
        ######-----------------#################     
       ######--------------------################    
       ######----------------------##############    
       ######------------------------############    
       #######-------------------------##########    
        ######---------------------------#######     
        ######------------   -------------######     
         ######----------- P --------------####      
          ######----------   ---------------##       
           ######----------------------------        
             #####-------------------------          
              ######----------------------           
                 ######----------------              
                     #####---------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.83e+21   2.96e+21  -1.38e+21 
  2.96e+21   3.05e+20  -1.86e+21 
 -1.38e+21  -1.86e+21   2.53e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090418090556/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   145    45   -85   3.47 0.3466
WVFGRD96    1.0   320    40   -90   3.51 0.3089
WVFGRD96    2.0   185    30   -20   3.55 0.2998
WVFGRD96    3.0   190    25   -20   3.56 0.3668
WVFGRD96    4.0   185    25   -35   3.57 0.4236
WVFGRD96    5.0   175    20   -45   3.69 0.4820
WVFGRD96    6.0   170    25   -55   3.71 0.5352
WVFGRD96    7.0   170    25   -55   3.72 0.5716
WVFGRD96    8.0   175    30   -50   3.69 0.5884
WVFGRD96    9.0   175    30   -45   3.70 0.6010
WVFGRD96   10.0   175    30   -45   3.71 0.6071
WVFGRD96   11.0   175    30   -45   3.72 0.6069
WVFGRD96   12.0   175    30   -45   3.73 0.6009
WVFGRD96   13.0   180    30   -40   3.73 0.5915
WVFGRD96   14.0   180    30   -40   3.74 0.5799
WVFGRD96   15.0   180    30   -40   3.79 0.5724
WVFGRD96   16.0   180    30   -40   3.79 0.5571
WVFGRD96   17.0   185    30   -30   3.80 0.5410
WVFGRD96   18.0   185    30   -30   3.81 0.5254
WVFGRD96   19.0   185    30   -30   3.82 0.5083
WVFGRD96   20.0   185    30   -30   3.83 0.4922
WVFGRD96   21.0   180    30   -35   3.83 0.4762
WVFGRD96   22.0   180    30   -35   3.84 0.4616
WVFGRD96   23.0   180    30   -35   3.85 0.4481
WVFGRD96   24.0   180    35   -30   3.85 0.4347
WVFGRD96   25.0   180    35   -30   3.86 0.4210
WVFGRD96   26.0   180    35   -30   3.86 0.4066
WVFGRD96   27.0   180    35   -30   3.86 0.3921
WVFGRD96   28.0   180    35   -30   3.86 0.3782
WVFGRD96   29.0   180    35   -30   3.87 0.3649

The best solution is

WVFGRD96   10.0   175    30   -45   3.71 0.6071

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Wed Apr 29 09:13:01 CDT 2009

Last Changed 2009/04/18