Location

2009/04/09 22:40:06 42.481 13.298 10.9 3.60 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2009/04/09 22:40:06:0  42.48   13.30  10.9 3.6 Italy
 
 Stations used:
   IV.AOI IV.ARCI IV.ARVD IV.ASSB IV.CAFI IV.CAFR IV.CERT 
   IV.CESX IV.CING IV.FDMO IV.FIAM IV.GUAR IV.LPEL IV.MGAB 
   IV.MNS IV.MODR IV.MTCE IV.MURB IV.NRCA IV.OFFI IV.PARC 
   IV.RMP IV.SGG IV.TERO IV.TOLF IV.TRTR IV.VAGA IV.VVLD 
   MN.AQU 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 4.62e+21 dyne-cm
  Mw = 3.71 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      315    85   -80
   NP2       71    11   -153
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.62e+21     39      36
    N   0.00e+00     10     134
    P  -4.62e+21     49     236

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.20e+21
       Mxy     3.95e+20
       Mxz     3.12e+21
       Myy    -4.05e+20
       Myz     3.22e+21
       Mzz    -7.91e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             -#############################          
           ------#################   ########        
          ---------############### T #########       
         ------------#############   ##########      
        ---------------#########################     
        -----------------#######################     
       --------------------#####################-    
       ----------------------###################-    
       ------------------------#################-    
       --------------------------###############-    
        ----------   -------------#############-     
        ---------- P ---------------##########--     
         ---------   -----------------#######--      
          -----------------------------#####--       
           #-----------------------------##--        
             #---------------------------#-          
              ##----------------------####           
                 ###--------------#####              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -7.91e+20   3.12e+21  -3.22e+21 
  3.12e+21   1.20e+21  -3.95e+20 
 -3.22e+21  -3.95e+20  -4.05e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090409224006/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 315
      DIP = 85
     RAKE = -80
       MW = 3.71
       HS = 10.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2009/04/09 22:40:06:0  42.48   13.30  10.9 3.6 Italy
 
 Stations used:
   IV.AOI IV.ARCI IV.ARVD IV.ASSB IV.CAFI IV.CAFR IV.CERT 
   IV.CESX IV.CING IV.FDMO IV.FIAM IV.GUAR IV.LPEL IV.MGAB 
   IV.MNS IV.MODR IV.MTCE IV.MURB IV.NRCA IV.OFFI IV.PARC 
   IV.RMP IV.SGG IV.TERO IV.TOLF IV.TRTR IV.VAGA IV.VVLD 
   MN.AQU 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 4.62e+21 dyne-cm
  Mw = 3.71 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      315    85   -80
   NP2       71    11   -153
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.62e+21     39      36
    N   0.00e+00     10     134
    P  -4.62e+21     49     236

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.20e+21
       Mxy     3.95e+20
       Mxz     3.12e+21
       Myy    -4.05e+20
       Myz     3.22e+21
       Mzz    -7.91e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             -#############################          
           ------#################   ########        
          ---------############### T #########       
         ------------#############   ##########      
        ---------------#########################     
        -----------------#######################     
       --------------------#####################-    
       ----------------------###################-    
       ------------------------#################-    
       --------------------------###############-    
        ----------   -------------#############-     
        ---------- P ---------------##########--     
         ---------   -----------------#######--      
          -----------------------------#####--       
           #-----------------------------##--        
             #---------------------------#-          
              ##----------------------####           
                 ###--------------#####              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -7.91e+20   3.12e+21  -3.22e+21 
  3.12e+21   1.20e+21  -3.95e+20 
 -3.22e+21  -3.95e+20  -4.05e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090409224006/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   130    50   -95   3.52 0.4652
WVFGRD96    1.0   130    50   -90   3.56 0.4083
WVFGRD96    2.0   305    25  -100   3.63 0.3442
WVFGRD96    3.0   135    90    85   3.63 0.4316
WVFGRD96    4.0   315    85   -85   3.60 0.5005
WVFGRD96    5.0   315    85   -85   3.72 0.5563
WVFGRD96    6.0   315    85   -85   3.72 0.6029
WVFGRD96    7.0   135    90    85   3.73 0.6301
WVFGRD96    8.0   315    85   -80   3.69 0.6482
WVFGRD96    9.0   135    90    85   3.70 0.6532
WVFGRD96   10.0   315    85   -80   3.71 0.6534
WVFGRD96   11.0   315    85   -85   3.72 0.6468
WVFGRD96   12.0   315    85   -80   3.73 0.6359
WVFGRD96   13.0   315    85   -85   3.73 0.6223
WVFGRD96   14.0   315    85   -85   3.74 0.6066
WVFGRD96   15.0   135    90    85   3.79 0.5885
WVFGRD96   16.0   315    85   -85   3.80 0.5693
WVFGRD96   17.0   135    90    85   3.80 0.5455
WVFGRD96   18.0   315    85   -85   3.81 0.5252
WVFGRD96   19.0   135    90    80   3.82 0.5005
WVFGRD96   20.0   135    90    80   3.82 0.4776
WVFGRD96   21.0   315    85   -85   3.83 0.4586
WVFGRD96   22.0   315    75   -85   3.84 0.4408
WVFGRD96   23.0   315    70   -85   3.85 0.4280
WVFGRD96   24.0   315    70   -85   3.85 0.4160
WVFGRD96   25.0   290    30    55   3.87 0.4028
WVFGRD96   26.0   305    20    75   3.87 0.3917
WVFGRD96   27.0   300    20    70   3.87 0.3843
WVFGRD96   28.0   310    20    80   3.87 0.3760
WVFGRD96   29.0   140    65    90   3.88 0.3698

The best solution is

WVFGRD96   10.0   315    85   -80   3.71 0.6534

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Mon Apr 20 11:28:37 CDT 2009

Last Changed 2009/04/09