Location

2009/04/05 20:48:54 42.332 13.372 8.4 3.90 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2009/04/05 20:48:54:0  42.33   13.37   8.4 3.9 Italy
 
 Stations used:
   IV.AOI IV.ARVD IV.ASQU IV.ASSB IV.BDI IV.CAFI IV.CERT 
   IV.CESI IV.CING IV.CSNT IV.FAGN IV.FIAM IV.MGAB IV.MNS 
   IV.MTCE IV.MTRZ IV.MURB IV.OFFI IV.PARC IV.PESA IV.PIEI 
   IV.SACS IV.TERO IV.TOLF IV.TRTR IV.ZCCA 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 9.55e+21 dyne-cm
  Mw = 3.92 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      126    66   -129
   NP2       10    45   -35
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   9.55e+21     12     244
    N   0.00e+00     35     145
    P  -9.55e+21     52     350

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.73e+21
       Mxy     4.26e+21
       Mxz    -5.45e+21
       Myy     7.20e+21
       Myz    -9.61e+20
       Mzz    -5.48e+21
                                                     
                                                     
                                                     
                                                     
                     ------------##                  
                 ------------------####              
              ----------------------######           
             ------------------------######          
           ---------------------------#######        
          ##-------------   ----------########       
         ####------------ P -----------########      
        ######-----------   -----------#########     
        #######------------------------#########     
       #########-----------------------##########    
       ###########---------------------##########    
       #############-------------------##########    
       ###############-----------------##########    
        ################--------------##########     
        ##   ##############-----------##########     
         # T #################-------##########      
             #####################--##########       
           ########################-----#####        
             #####################---------          
              ##################----------           
                 #############---------              
                     ######--------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.48e+21  -5.45e+21   9.61e+20 
 -5.45e+21  -1.73e+21  -4.26e+21 
  9.61e+20  -4.26e+21   7.20e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090405204854/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 10
      DIP = 45
     RAKE = -35
       MW = 3.92
       HS = 10.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2009/04/05 20:48:54:0  42.33   13.37   8.4 3.9 Italy
 
 Stations used:
   IV.AOI IV.ARVD IV.ASQU IV.ASSB IV.BDI IV.CAFI IV.CERT 
   IV.CESI IV.CING IV.CSNT IV.FAGN IV.FIAM IV.MGAB IV.MNS 
   IV.MTCE IV.MTRZ IV.MURB IV.OFFI IV.PARC IV.PESA IV.PIEI 
   IV.SACS IV.TERO IV.TOLF IV.TRTR IV.ZCCA 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 9.55e+21 dyne-cm
  Mw = 3.92 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      126    66   -129
   NP2       10    45   -35
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   9.55e+21     12     244
    N   0.00e+00     35     145
    P  -9.55e+21     52     350

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.73e+21
       Mxy     4.26e+21
       Mxz    -5.45e+21
       Myy     7.20e+21
       Myz    -9.61e+20
       Mzz    -5.48e+21
                                                     
                                                     
                                                     
                                                     
                     ------------##                  
                 ------------------####              
              ----------------------######           
             ------------------------######          
           ---------------------------#######        
          ##-------------   ----------########       
         ####------------ P -----------########      
        ######-----------   -----------#########     
        #######------------------------#########     
       #########-----------------------##########    
       ###########---------------------##########    
       #############-------------------##########    
       ###############-----------------##########    
        ################--------------##########     
        ##   ##############-----------##########     
         # T #################-------##########      
             #####################--##########       
           ########################-----#####        
             #####################---------          
              ##################----------           
                 #############---------              
                     ######--------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.48e+21  -5.45e+21   9.61e+20 
 -5.45e+21  -1.73e+21  -4.26e+21 
  9.61e+20  -4.26e+21   7.20e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090405204854/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   340    45   -80   3.64 0.2842
WVFGRD96    1.0   350    50   -65   3.68 0.2807
WVFGRD96    2.0   355    50   -60   3.75 0.3060
WVFGRD96    3.0   220    35    20   3.77 0.3463
WVFGRD96    4.0   215    45    20   3.77 0.3844
WVFGRD96    5.0    10    35   -30   3.88 0.4289
WVFGRD96    6.0     0    35   -50   3.92 0.4739
WVFGRD96    7.0     0    40   -50   3.93 0.5101
WVFGRD96    8.0     5    45   -40   3.90 0.5192
WVFGRD96    9.0    10    45   -35   3.91 0.5271
WVFGRD96   10.0    10    45   -35   3.92 0.5277
WVFGRD96   11.0    15    50   -25   3.93 0.5236
WVFGRD96   12.0    10    50   -30   3.94 0.5149
WVFGRD96   13.0    15    55   -25   3.95 0.5035
WVFGRD96   14.0    15    55   -20   3.96 0.4900
WVFGRD96   15.0    15    55   -20   3.99 0.4821
WVFGRD96   16.0    15    55   -20   4.00 0.4708
WVFGRD96   17.0    20    45   -15   4.00 0.4610
WVFGRD96   18.0    20    45   -10   4.01 0.4499
WVFGRD96   19.0    20    50   -10   4.02 0.4391
WVFGRD96   20.0    15    55   -15   4.03 0.4297
WVFGRD96   21.0    15    60   -20   4.04 0.4220
WVFGRD96   22.0    10    60   -25   4.05 0.4168
WVFGRD96   23.0    10    60   -25   4.06 0.4141
WVFGRD96   24.0    10    60   -25   4.07 0.4117
WVFGRD96   25.0    10    65   -25   4.08 0.4085
WVFGRD96   26.0    10    65   -20   4.09 0.4034
WVFGRD96   27.0    10    65   -20   4.10 0.3956
WVFGRD96   28.0    10    65   -20   4.12 0.3867
WVFGRD96   29.0    10    65   -20   4.13 0.3774

The best solution is

WVFGRD96   10.0    10    45   -35   3.92 0.5277

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Wed Apr 22 14:38:46 CDT 2009

Last Changed 2009/04/05