Location

Location ANSS

2021/04/19 22:57:11 47.77 16.13 5.0 4.3 Austria

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2021/04/19 22:57:11:1  47.77   16.13   5.0 4.3 Austria
 
 Stations used:
   BW.BGDS BW.BHG BW.MANZ BW.MGBB BW.ROTZ BW.SCE CH.BERNI 
   CH.DAVOX CR.ZAG GR.BRG GR.CLL GR.GEC2 GR.GEC7 GR.GRA1 
   GR.GRA2 GR.GRA4 GR.GRB1 GR.GRB2 GR.GRB3 GR.GRB4 GR.GRB5 
   GR.GRC1 GR.GRC3 GR.GRC4 GR.MOX HU.BEHE HU.CSKK HU.EGYH 
   HU.KOVH HU.MORH HU.MPLH HU.SOP HU.TIH MN.BLY MN.DPC MN.TRI 
   OE.ABTA OE.ARSA OE.BIOA OE.CONA OE.CSNA OE.DAVA OE.FETA 
   OE.KBA OE.MOA OE.MYKA OE.OBKA OE.SOKA OE.SQTA OE.VIE 
   OE.WATA OX.BAD OX.BOO OX.CAE OX.CIMO OX.CLUD OX.DRE OX.FUSE 
   OX.MLN OX.MPRI OX.PLRO OX.SABO OX.VARN SL.BOJS SL.CADS 
   SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBAS SL.GBRS SL.GCIS 
   SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU 
   SL.MOZS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS 
   SL.ZAVS 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.14e+22 dyne-cm
  Mw = 3.97 
  Z  = 15 km
  Plane   Strike  Dip  Rake
   NP1      112    74   -110
   NP2      345    25   -40
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.14e+22     27     218
    N   0.00e+00     19     118
    P  -1.14e+22     56     357

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.21e+21
       Mxy     4.58e+21
       Mxz    -8.83e+21
       Myy     3.38e+21
       Myz    -2.49e+21
       Mzz    -5.59e+21
                                                     
                                                     
                                                     
                                                     
                     -------#######                  
                 ----------------######              
              ----------------------######           
             -------------------------#####          
           ----------------------------######        
          ----------------   ------------#####       
         ----------------- P -------------#####      
        ##----------------   -------------######     
        ####-------------------------------#####     
       #######------------------------------#####    
       ##########---------------------------#####    
       #############------------------------#####    
       #################--------------------#####    
        #####################---------------####     
        ###########################--------#####     
         ##################################----      
          #######   ######################----       
           ###### T #####################----        
             ####   ####################---          
              #########################---           
                 ####################--              
                     #############-                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.59e+21  -8.83e+21   2.49e+21 
 -8.83e+21   2.21e+21  -4.58e+21 
  2.49e+21  -4.58e+21   3.38e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210419225711/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 345
      DIP = 25
     RAKE = -40
       MW = 3.97
       HS = 15.0

The NDK file is 20210419225711.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2021/04/19 22:57:11:1  47.77   16.13   5.0 4.3 Austria
 
 Stations used:
   BW.BGDS BW.BHG BW.MANZ BW.MGBB BW.ROTZ BW.SCE CH.BERNI 
   CH.DAVOX CR.ZAG GR.BRG GR.CLL GR.GEC2 GR.GEC7 GR.GRA1 
   GR.GRA2 GR.GRA4 GR.GRB1 GR.GRB2 GR.GRB3 GR.GRB4 GR.GRB5 
   GR.GRC1 GR.GRC3 GR.GRC4 GR.MOX HU.BEHE HU.CSKK HU.EGYH 
   HU.KOVH HU.MORH HU.MPLH HU.SOP HU.TIH MN.BLY MN.DPC MN.TRI 
   OE.ABTA OE.ARSA OE.BIOA OE.CONA OE.CSNA OE.DAVA OE.FETA 
   OE.KBA OE.MOA OE.MYKA OE.OBKA OE.SOKA OE.SQTA OE.VIE 
   OE.WATA OX.BAD OX.BOO OX.CAE OX.CIMO OX.CLUD OX.DRE OX.FUSE 
   OX.MLN OX.MPRI OX.PLRO OX.SABO OX.VARN SL.BOJS SL.CADS 
   SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBAS SL.GBRS SL.GCIS 
   SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU 
   SL.MOZS SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS 
   SL.ZAVS 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.14e+22 dyne-cm
  Mw = 3.97 
  Z  = 15 km
  Plane   Strike  Dip  Rake
   NP1      112    74   -110
   NP2      345    25   -40
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.14e+22     27     218
    N   0.00e+00     19     118
    P  -1.14e+22     56     357

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.21e+21
       Mxy     4.58e+21
       Mxz    -8.83e+21
       Myy     3.38e+21
       Myz    -2.49e+21
       Mzz    -5.59e+21
                                                     
                                                     
                                                     
                                                     
                     -------#######                  
                 ----------------######              
              ----------------------######           
             -------------------------#####          
           ----------------------------######        
          ----------------   ------------#####       
         ----------------- P -------------#####      
        ##----------------   -------------######     
        ####-------------------------------#####     
       #######------------------------------#####    
       ##########---------------------------#####    
       #############------------------------#####    
       #################--------------------#####    
        #####################---------------####     
        ###########################--------#####     
         ##################################----      
          #######   ######################----       
           ###### T #####################----        
             ####   ####################---          
              #########################---           
                 ####################--              
                     #############-                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.59e+21  -8.83e+21   2.49e+21 
 -8.83e+21   2.21e+21  -4.58e+21 
  2.49e+21  -4.58e+21   3.38e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210419225711/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   125    50    95   3.70 0.3803
WVFGRD96    2.0   305    40    90   3.78 0.4233
WVFGRD96    3.0   130    40   -85   3.83 0.3917
WVFGRD96    4.0   320    55   -75   3.85 0.3396
WVFGRD96    5.0    10    15   -10   3.86 0.4018
WVFGRD96    6.0    10    15   -10   3.86 0.4558
WVFGRD96    7.0     5    20   -15   3.85 0.4958
WVFGRD96    8.0     0    15   -20   3.93 0.5241
WVFGRD96    9.0    -5    15   -25   3.94 0.5579
WVFGRD96   10.0   355    20   -25   3.94 0.5852
WVFGRD96   11.0   345    20   -40   3.95 0.6060
WVFGRD96   12.0   345    20   -40   3.95 0.6201
WVFGRD96   13.0   345    25   -40   3.96 0.6306
WVFGRD96   14.0   345    25   -40   3.97 0.6360
WVFGRD96   15.0   345    25   -40   3.97 0.6370
WVFGRD96   16.0   345    25   -40   3.97 0.6346
WVFGRD96   17.0   345    25   -40   3.98 0.6294
WVFGRD96   18.0   350    25   -30   3.98 0.6227
WVFGRD96   19.0   350    25   -30   3.98 0.6144
WVFGRD96   20.0   350    25   -30   3.99 0.6050
WVFGRD96   21.0   355    25   -25   4.00 0.5956
WVFGRD96   22.0   355    25   -25   4.00 0.5844
WVFGRD96   23.0    -5    25   -25   4.01 0.5727
WVFGRD96   24.0    -5    25   -25   4.01 0.5601
WVFGRD96   25.0    -5    25   -25   4.01 0.5471
WVFGRD96   26.0    -5    25   -25   4.02 0.5336
WVFGRD96   27.0     0    25   -20   4.02 0.5197
WVFGRD96   28.0     0    25   -20   4.02 0.5056
WVFGRD96   29.0     0    25   -20   4.03 0.4912

The best solution is

WVFGRD96   15.0   345    25   -40   3.97 0.6370

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Tue Apr 20 13:55:31 CDT 2021