Location

Location ANSS

2021/02/01 08:35:18 39.051 26.107 7.2 5.2 Greece

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2021/02/01 08:35:18:0  39.05   26.11   7.2 5.2 Greece
 
 Stations used:
   BS.BLKB BS.LOZB GE.ISP HA.ATHU HA.KARY HL.ARG HL.DION 
   HL.KYMI HL.LIA HL.PRK HL.SAM2 HL.SKY HL.SMG HL.SMTH HT.AOS2 
   HT.CHOS KO.ADVT KO.APMY KO.ARMT KO.BALB KO.BCK KO.BGKT 
   KO.BLVD KO.BODT KO.CAVI KO.CRLT KO.CTKS KO.CTYL KO.DALY 
   KO.DKL KO.EDC KO.ELL KO.ERIK KO.EZN KO.GADA KO.GEDZ KO.GELI 
   KO.GEML KO.GULT KO.ISK KO.KCTX KO.KIZT KO.KLYT KO.KONT 
   KO.KULA KO.LOD KO.PHSR KO.RKY KO.RUZG KO.SAUV KO.SDAG 
   KO.SERH KO.SHUT KO.SILT KO.SIMA KO.SVRH KO.TVSB KO.UVEZ 
   KO.YAYO KO.YLV RO.ICOR TU.BORA 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 4.12e+23 dyne-cm
  Mw = 5.01 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      130    70   -35
   NP2      233    57   -156
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.12e+23      8     184
    N   0.00e+00     50     284
    P  -4.12e+23     39      88

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.02e+23
       Mxy     1.97e+22
       Mxz    -6.45e+22
       Myy    -2.50e+23
       Myz    -2.05e+23
       Mzz    -1.52e+23
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             ##############################          
           -######################-----------        
          ---################-----------------       
         -----############---------------------      
        -------########-------------------------     
        ---------####---------------------------     
       -----------#--------------------   -------    
       ----------###------------------- P -------    
       ---------#####------------------   -------    
       -------#########--------------------------    
        -----#############----------------------     
        -----###############--------------------     
         ---###################----------------      
          --######################------------       
           ###########################-------        
             ##############################          
              ############################           
                 ########   ###########              
                     #### T #######                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.52e+23  -6.45e+22   2.05e+23 
 -6.45e+22   4.02e+23  -1.97e+22 
  2.05e+23  -1.97e+22  -2.50e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210201083518/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 130
      DIP = 70
     RAKE = -35
       MW = 5.01
       HS = 8.0

The NDK file is 20210201083518.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
OTHER
 USGS/SLU Moment Tensor Solution
 ENS  2021/02/01 08:35:18:0  39.05   26.11   7.2 5.2 Greece
 
 Stations used:
   BS.BLKB BS.LOZB GE.ISP HA.ATHU HA.KARY HL.ARG HL.DION 
   HL.KYMI HL.LIA HL.PRK HL.SAM2 HL.SKY HL.SMG HL.SMTH HT.AOS2 
   HT.CHOS KO.ADVT KO.APMY KO.ARMT KO.BALB KO.BCK KO.BGKT 
   KO.BLVD KO.BODT KO.CAVI KO.CRLT KO.CTKS KO.CTYL KO.DALY 
   KO.DKL KO.EDC KO.ELL KO.ERIK KO.EZN KO.GADA KO.GEDZ KO.GELI 
   KO.GEML KO.GULT KO.ISK KO.KCTX KO.KIZT KO.KLYT KO.KONT 
   KO.KULA KO.LOD KO.PHSR KO.RKY KO.RUZG KO.SAUV KO.SDAG 
   KO.SERH KO.SHUT KO.SILT KO.SIMA KO.SVRH KO.TVSB KO.UVEZ 
   KO.YAYO KO.YLV RO.ICOR TU.BORA 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 4.12e+23 dyne-cm
  Mw = 5.01 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      130    70   -35
   NP2      233    57   -156
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.12e+23      8     184
    N   0.00e+00     50     284
    P  -4.12e+23     39      88

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.02e+23
       Mxy     1.97e+22
       Mxz    -6.45e+22
       Myy    -2.50e+23
       Myz    -2.05e+23
       Mzz    -1.52e+23
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             ##############################          
           -######################-----------        
          ---################-----------------       
         -----############---------------------      
        -------########-------------------------     
        ---------####---------------------------     
       -----------#--------------------   -------    
       ----------###------------------- P -------    
       ---------#####------------------   -------    
       -------#########--------------------------    
        -----#############----------------------     
        -----###############--------------------     
         ---###################----------------      
          --######################------------       
           ###########################-------        
             ##############################          
              ############################           
                 ########   ###########              
                     #### T #######                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.52e+23  -6.45e+22   2.05e+23 
 -6.45e+22   4.02e+23  -1.97e+22 
  2.05e+23  -1.97e+22  -2.50e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210201083518/index.html
	


https://static2.emsc.eu/Images/EVID/94/944/944608/944608.MT.jpg
https://geofon.gfz-potsdam.de/eqinfo/event.php?id=gfz2021cfhp
Time 2021-02-01 08:35:18 Magnitude 5.1 Latitude 38.97N Longitude 26.18E Depth 11 km Nodal planes Strike Dip Rake 101 36 -76 264 54 -99

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   140    75   -25   4.70 0.3814
WVFGRD96    2.0   140    75   -30   4.81 0.4802
WVFGRD96    3.0   135    75   -40   4.89 0.5337
WVFGRD96    4.0   130    70   -45   4.93 0.5748
WVFGRD96    5.0   130    70   -40   4.94 0.6044
WVFGRD96    6.0   135    75   -35   4.95 0.6244
WVFGRD96    7.0   135    75   -30   4.96 0.6397
WVFGRD96    8.0   130    70   -35   5.01 0.6610
WVFGRD96    9.0   135    75   -30   5.01 0.6605
WVFGRD96   10.0   135    80   -25   5.02 0.6588
WVFGRD96   11.0   320    90    25   5.02 0.6483
WVFGRD96   12.0   135    80   -25   5.03 0.6457
WVFGRD96   13.0   320    90    20   5.04 0.6374
WVFGRD96   14.0   320    90    20   5.04 0.6283
WVFGRD96   15.0   140    90   -20   5.05 0.6178
WVFGRD96   16.0   320    90    20   5.06 0.6059
WVFGRD96   17.0   140    85   -20   5.06 0.5942
WVFGRD96   18.0   320    90    20   5.07 0.5837
WVFGRD96   19.0   140    90   -20   5.08 0.5730
WVFGRD96   20.0   140    90   -20   5.08 0.5623
WVFGRD96   21.0   320    90    20   5.09 0.5515
WVFGRD96   22.0   140    90   -20   5.10 0.5402
WVFGRD96   23.0   140    90   -20   5.10 0.5284
WVFGRD96   24.0   140    90   -20   5.11 0.5169
WVFGRD96   25.0   140    90   -20   5.12 0.5058
WVFGRD96   26.0   140    90   -20   5.12 0.4947
WVFGRD96   27.0   140    90   -20   5.13 0.4837
WVFGRD96   28.0   140    90   -20   5.13 0.4726
WVFGRD96   29.0   320    85    20   5.14 0.4621

The best solution is

WVFGRD96    8.0   130    70   -35   5.01 0.6610

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Feb 1 10:26:29 CST 2021