Location

Location ANSS

2020/12/30 05:26:40 45.44 16.21 10.0 4.7 Croatia

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2020/12/30 05:26:40:6  45.44   16.21  10.0 4.7 Croatia
 
 Stations used:
   AC.BCI AC.KBN BW.ALFT BW.BE1 BW.BGDS BW.BIB BW.GELB BW.GRMB 
   BW.KW1 BW.MANZ BW.MGBB BW.MGS01 BW.MGS02 BW.MGS03 BW.MGS05 
   BW.PART BW.RJOB BW.RMOA BW.RNHA BW.RNON BW.ROTZ BW.RTBE 
   BW.RTSA BW.SCE BW.TON BW.WETR BW.ZUGS CH.ACB CH.BERNI 
   CH.BNALP CH.DAGMA CH.DAVOX CH.EMBD CH.EMING CH.FUORN 
   CH.HASLI CH.LIENZ CH.LLS CH.METMA CH.MUGIO CH.MUO CH.PANIX 
   CH.PLONS CH.ROMAN CH.SGT05 CH.SLE CH.TRULL CH.VDL CH.WALHA 
   CH.WGT CH.WILA CH.ZUR CR.ZAG GR.BRG GR.FUR GR.GEC7 GR.GRA1 
   GR.GRA2 GR.GRA4 GR.GRB1 GR.GRB2 GR.GRB3 GR.GRB4 GR.GRC1 
   GR.GRC2 GR.GRC3 GR.GRC4 GR.UBR GR.WET HU.KOVH HU.SOP MN.BLY 
   MN.DPC MN.PDG MN.TRI MN.TUE OE.ABTA OE.ARSA OE.BIOA OE.CONA 
   OE.CSNA OE.DAVA OE.FETA OE.KBA OE.LESA OE.MOA OE.MOTA 
   OE.OBKA OE.RETA OE.RONA OE.SOKA OE.SQTA OE.VIE OE.WATA 
   OX.AGOR OX.BAD OX.BALD OX.CIMO OX.CLUD OX.DRE OX.FUSE 
   OX.MARN OX.MLN OX.MPRI OX.SABO OX.VARN SJ.FRGS SL.BOJS 
   SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBAS SL.GBRS 
   SL.GCIS SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.LJU 
   SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS SL.ZAVS 
   SX.TANN 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 5.01e+22 dyne-cm
  Mw = 4.40 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1       75    85    20
   NP2      343    70   175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.01e+22     18     301
    N   0.00e+00     69      88
    P  -5.01e+22     10     207

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.62e+22
       Mxy    -3.99e+22
       Mxz     1.52e+22
       Myy     2.33e+22
       Myz    -8.33e+21
       Mzz     2.98e+21
                                                     
                                                     
                                                     
                                                     
                     ##------------                  
                 #######---------------              
              ############----------------           
             ##############----------------          
           #################-----------------        
          #   ###############-----------------       
         ## T ################-----------------      
        ###   #################-----------------     
        ########################--------------##     
       #########################----------#######    
       ##########################---#############    
       ######################-----###############    
       ###############------------###############    
        #####---------------------##############     
        ---------------------------#############     
         --------------------------############      
          -------------------------###########       
           ------------------------##########        
             ----------------------########          
              ----   --------------#######           
                 - P --------------####              
                     -------------#                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.98e+21   1.52e+22   8.33e+21 
  1.52e+22  -2.62e+22   3.99e+22 
  8.33e+21   3.99e+22   2.33e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20201230052640/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 75
      DIP = 85
     RAKE = 20
       MW = 4.40
       HS = 10.0

The NDK file is 20201230052640.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2020/12/30 05:26:40:6  45.44   16.21  10.0 4.7 Croatia
 
 Stations used:
   AC.BCI AC.KBN BW.ALFT BW.BE1 BW.BGDS BW.BIB BW.GELB BW.GRMB 
   BW.KW1 BW.MANZ BW.MGBB BW.MGS01 BW.MGS02 BW.MGS03 BW.MGS05 
   BW.PART BW.RJOB BW.RMOA BW.RNHA BW.RNON BW.ROTZ BW.RTBE 
   BW.RTSA BW.SCE BW.TON BW.WETR BW.ZUGS CH.ACB CH.BERNI 
   CH.BNALP CH.DAGMA CH.DAVOX CH.EMBD CH.EMING CH.FUORN 
   CH.HASLI CH.LIENZ CH.LLS CH.METMA CH.MUGIO CH.MUO CH.PANIX 
   CH.PLONS CH.ROMAN CH.SGT05 CH.SLE CH.TRULL CH.VDL CH.WALHA 
   CH.WGT CH.WILA CH.ZUR CR.ZAG GR.BRG GR.FUR GR.GEC7 GR.GRA1 
   GR.GRA2 GR.GRA4 GR.GRB1 GR.GRB2 GR.GRB3 GR.GRB4 GR.GRC1 
   GR.GRC2 GR.GRC3 GR.GRC4 GR.UBR GR.WET HU.KOVH HU.SOP MN.BLY 
   MN.DPC MN.PDG MN.TRI MN.TUE OE.ABTA OE.ARSA OE.BIOA OE.CONA 
   OE.CSNA OE.DAVA OE.FETA OE.KBA OE.LESA OE.MOA OE.MOTA 
   OE.OBKA OE.RETA OE.RONA OE.SOKA OE.SQTA OE.VIE OE.WATA 
   OX.AGOR OX.BAD OX.BALD OX.CIMO OX.CLUD OX.DRE OX.FUSE 
   OX.MARN OX.MLN OX.MPRI OX.SABO OX.VARN SJ.FRGS SL.BOJS 
   SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBAS SL.GBRS 
   SL.GCIS SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.LJU 
   SL.PERS SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS SL.ZAVS 
   SX.TANN 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 5.01e+22 dyne-cm
  Mw = 4.40 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1       75    85    20
   NP2      343    70   175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.01e+22     18     301
    N   0.00e+00     69      88
    P  -5.01e+22     10     207

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.62e+22
       Mxy    -3.99e+22
       Mxz     1.52e+22
       Myy     2.33e+22
       Myz    -8.33e+21
       Mzz     2.98e+21
                                                     
                                                     
                                                     
                                                     
                     ##------------                  
                 #######---------------              
              ############----------------           
             ##############----------------          
           #################-----------------        
          #   ###############-----------------       
         ## T ################-----------------      
        ###   #################-----------------     
        ########################--------------##     
       #########################----------#######    
       ##########################---#############    
       ######################-----###############    
       ###############------------###############    
        #####---------------------##############     
        ---------------------------#############     
         --------------------------############      
          -------------------------###########       
           ------------------------##########        
             ----------------------########          
              ----   --------------#######           
                 - P --------------####              
                     -------------#                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.98e+21   1.52e+22   8.33e+21 
  1.52e+22  -2.62e+22   3.99e+22 
  8.33e+21   3.99e+22   2.33e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20201230052640/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    80    80    10   4.05 0.4064
WVFGRD96    2.0    80    75    20   4.18 0.5202
WVFGRD96    3.0    80    75    20   4.23 0.5644
WVFGRD96    4.0    80    80    25   4.26 0.5973
WVFGRD96    5.0    80    80    25   4.29 0.6247
WVFGRD96    6.0    80    80    20   4.31 0.6478
WVFGRD96    7.0    75    90    20   4.33 0.6689
WVFGRD96    8.0    75    90    25   4.37 0.6894
WVFGRD96    9.0    75    90    25   4.39 0.6972
WVFGRD96   10.0    75    85    20   4.40 0.6993
WVFGRD96   11.0    75    90    20   4.41 0.6973
WVFGRD96   12.0    75    85    20   4.42 0.6913
WVFGRD96   13.0    75    85    15   4.43 0.6833
WVFGRD96   14.0    75    85    15   4.43 0.6729
WVFGRD96   15.0    75    85    15   4.44 0.6614
WVFGRD96   16.0    75    85    15   4.45 0.6493
WVFGRD96   17.0    75    85    15   4.45 0.6368
WVFGRD96   18.0    75    85    15   4.46 0.6241
WVFGRD96   19.0    75    80    15   4.47 0.6123
WVFGRD96   20.0    75    80    15   4.47 0.6014
WVFGRD96   21.0    75    80    15   4.48 0.5910
WVFGRD96   22.0    75    80    15   4.49 0.5799
WVFGRD96   23.0    75    80    15   4.49 0.5702
WVFGRD96   24.0    75    80    15   4.50 0.5606
WVFGRD96   25.0    75    80    15   4.50 0.5508
WVFGRD96   26.0    75    85    15   4.51 0.5418
WVFGRD96   27.0    75    85    15   4.51 0.5337
WVFGRD96   28.0    75    85    15   4.52 0.5251
WVFGRD96   29.0    75    90    10   4.52 0.5165

The best solution is

WVFGRD96   10.0    75    85    20   4.40 0.6993

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Wed Jan 6 20:09:53 CST 2021