Location

Location ANSS

2020/12/29 11:19:54 45.41 16.30 10.0 6.4 Croatia

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2020/12/29 11:19:54:0  45.41   16.30  10.0 6.4 Croatia
 
 Stations used:
   AC.BCI BS.BLKB BW.ALFT BW.BE1 BW.BGDS BW.BIB BW.GELB 
   BW.GRMB BW.KW1 BW.MANZ BW.MGBB BW.MGS02 BW.MGS03 BW.MGS05 
   BW.PART BW.RMOA BW.RNON BW.ROTZ BW.SCE BW.TON BW.WETR 
   BW.ZUGS CH.BERNI CH.BNALP CH.DAVOX CH.EMING CH.FIESA 
   CH.FUORN CH.FUSIO CH.GRIMS CH.LIENZ CH.LLS CH.MUGIO CH.MUO 
   CH.PANIX CH.PLONS CH.ROMAN CH.SGT05 CH.SGT18 CH.TRULL 
   CH.VDL CH.VDR CH.WGT CH.WILA CH.ZUR GE.MATE GR.BRG GR.FUR 
   GR.GEC2 GR.GEC7 GR.GRA4 GR.GRC1 GR.GRC3 GR.GRC4 GR.WET 
   HU.AMBH HU.BEHE HU.BSZH HU.BUD HU.CSKK HU.KOVH HU.MORH 
   HU.MPLH HU.SOP HU.TIH MN.BLY MN.PDG MN.TRI MN.TUE OE.ABTA 
   OE.ARSA OE.BIOA OE.CONA OE.CSNA OE.DAVA OE.FETA OE.KBA 
   OE.MOA OE.MOTA OE.MYKA OE.OBKA OE.RETA OE.RONA OE.SOKA 
   OE.VIE OE.WATA OX.ACOM OX.BAD OX.BALD OX.BOO OX.CAE OX.CIMO 
   OX.CLUD OX.DRE OX.FUSE OX.MARN OX.MLN OX.MPRI OX.PRED 
   OX.SABO OX.VARN PL.NIE PL.OJC RO.MDVR RO.PUNG SJ.BBLS 
   SJ.FRGS SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS 
   SL.GBRS SL.GCIS SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS 
   SL.KOGS SL.LJU SL.PDKS SL.PERS SL.ROBS SL.SKDS SL.VISS 
   SL.VNDS SL.VOJS SL.ZAVS SX.TANN SX.TRIB SX.WERD SX.WERN 
   TH.PLN 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 3.67e+25 dyne-cm
  Mw = 6.31 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      312    80   165
   NP2       45    75    10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.67e+25     18     268
    N   0.00e+00     72     101
    P  -3.67e+25      4     359

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.65e+25
       Mxy     1.59e+24
       Mxz    -2.71e+24
       Myy     3.33e+25
       Myz    -1.05e+25
       Mzz     3.19e+24
                                                     
                                                     
                                                     
                                                     
                     ----- P ------                  
                 ---------   ----------              
              ----------------------------           
             -----------------------------#          
           #####--------------------------###        
          #########----------------------#####       
         #############------------------#######      
        ################--------------##########     
        ##################-----------###########     
       ######################-------#############    
       ##   ###################---###############    
       ## T ####################-################    
       ##   ###################---###############    
        #####################-------############     
        ###################-----------##########     
         ###############---------------########      
          ############-------------------#####       
           ########-----------------------###        
             ###---------------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.19e+24  -2.71e+24   1.05e+25 
 -2.71e+24  -3.65e+25  -1.59e+24 
  1.05e+25  -1.59e+24   3.33e+25 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20201229111954/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 45
      DIP = 75
     RAKE = 10
       MW = 6.31
       HS = 12.0

The NDK file is 20201229111954.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSW
OTHER
 USGS/SLU Moment Tensor Solution
 ENS  2020/12/29 11:19:54:0  45.41   16.30  10.0 6.4 Croatia
 
 Stations used:
   AC.BCI BS.BLKB BW.ALFT BW.BE1 BW.BGDS BW.BIB BW.GELB 
   BW.GRMB BW.KW1 BW.MANZ BW.MGBB BW.MGS02 BW.MGS03 BW.MGS05 
   BW.PART BW.RMOA BW.RNON BW.ROTZ BW.SCE BW.TON BW.WETR 
   BW.ZUGS CH.BERNI CH.BNALP CH.DAVOX CH.EMING CH.FIESA 
   CH.FUORN CH.FUSIO CH.GRIMS CH.LIENZ CH.LLS CH.MUGIO CH.MUO 
   CH.PANIX CH.PLONS CH.ROMAN CH.SGT05 CH.SGT18 CH.TRULL 
   CH.VDL CH.VDR CH.WGT CH.WILA CH.ZUR GE.MATE GR.BRG GR.FUR 
   GR.GEC2 GR.GEC7 GR.GRA4 GR.GRC1 GR.GRC3 GR.GRC4 GR.WET 
   HU.AMBH HU.BEHE HU.BSZH HU.BUD HU.CSKK HU.KOVH HU.MORH 
   HU.MPLH HU.SOP HU.TIH MN.BLY MN.PDG MN.TRI MN.TUE OE.ABTA 
   OE.ARSA OE.BIOA OE.CONA OE.CSNA OE.DAVA OE.FETA OE.KBA 
   OE.MOA OE.MOTA OE.MYKA OE.OBKA OE.RETA OE.RONA OE.SOKA 
   OE.VIE OE.WATA OX.ACOM OX.BAD OX.BALD OX.BOO OX.CAE OX.CIMO 
   OX.CLUD OX.DRE OX.FUSE OX.MARN OX.MLN OX.MPRI OX.PRED 
   OX.SABO OX.VARN PL.NIE PL.OJC RO.MDVR RO.PUNG SJ.BBLS 
   SJ.FRGS SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS 
   SL.GBRS SL.GCIS SL.GOLS SL.GORS SL.GROS SL.JAVS SL.KNDS 
   SL.KOGS SL.LJU SL.PDKS SL.PERS SL.ROBS SL.SKDS SL.VISS 
   SL.VNDS SL.VOJS SL.ZAVS SX.TANN SX.TRIB SX.WERD SX.WERN 
   TH.PLN 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 3.67e+25 dyne-cm
  Mw = 6.31 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      312    80   165
   NP2       45    75    10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.67e+25     18     268
    N   0.00e+00     72     101
    P  -3.67e+25      4     359

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.65e+25
       Mxy     1.59e+24
       Mxz    -2.71e+24
       Myy     3.33e+25
       Myz    -1.05e+25
       Mzz     3.19e+24
                                                     
                                                     
                                                     
                                                     
                     ----- P ------                  
                 ---------   ----------              
              ----------------------------           
             -----------------------------#          
           #####--------------------------###        
          #########----------------------#####       
         #############------------------#######      
        ################--------------##########     
        ##################-----------###########     
       ######################-------#############    
       ##   ###################---###############    
       ## T ####################-################    
       ##   ###################---###############    
        #####################-------############     
        ###################-----------##########     
         ###############---------------########      
          ############-------------------#####       
           ########-----------------------###        
             ###---------------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.19e+24  -2.71e+24   1.05e+25 
 -2.71e+24  -3.65e+25  -1.59e+24 
  1.05e+25  -1.59e+24   3.33e+25 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20201229111954/index.html
	
W-phase Moment Tensor (Mww)
Moment 4.411e+18 N-m
Magnitude 6.36 Mww
Depth 13.5 km
Percent DC 97%
Half Duration 3.93 s
Catalog US
Data Source US 1
Contributor US 1

Nodal Planes
Plane Strike Dip Rake
NP1 224 89 14
NP2 134 76 179

Principal Axes
Axis Value Plunge Azimuth
T 4.444e+18 N-m 11 90
N -0.067e+18 N-m 76 228
P -4.377e+18 N-m 9 358

        

F-E Region	NW Balkan Region	
Mw Beach Ball
Time	2020-12-29 11:19:55.6 UTC
Magnitude	6.4 (Mw)
Epicenter	16.21E 45.48N
Depth	10 km
Status	M - manually revised 


Event Map for gfz2020zocb
Moment tensor solutions
GEOFON standard1
Beachball
Time
2020-12-29 11:19:55
Magnitude
6.4
Latitude
45.47N
Longitude
16.20E
Depth
11 km
Nodal planes
Strike	Dip	Rake
131	83	-167
40	77	-6
        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   220    90     0   5.97 0.4634
WVFGRD96    2.0    40    85    -5   6.07 0.5974
WVFGRD96    3.0    40    90     0   6.11 0.6527
WVFGRD96    4.0    40    90     5   6.14 0.6888
WVFGRD96    5.0    40    85     5   6.17 0.7146
WVFGRD96    6.0   220    90   -10   6.19 0.7353
WVFGRD96    7.0    40    85    10   6.22 0.7571
WVFGRD96    8.0    45    75    10   6.26 0.7786
WVFGRD96    9.0    45    75    10   6.27 0.7862
WVFGRD96   10.0    45    70    10   6.29 0.7912
WVFGRD96   11.0    45    70    10   6.31 0.7942
WVFGRD96   12.0    45    75    10   6.31 0.7949
WVFGRD96   13.0    45    75    10   6.33 0.7936
WVFGRD96   14.0    45    75    10   6.34 0.7904
WVFGRD96   15.0    45    75    10   6.35 0.7859
WVFGRD96   16.0    45    75    10   6.35 0.7797
WVFGRD96   17.0    45    75    10   6.36 0.7722
WVFGRD96   18.0    45    75    10   6.37 0.7634
WVFGRD96   19.0    45    75    10   6.38 0.7535
WVFGRD96   20.0    40    80    10   6.38 0.7429
WVFGRD96   21.0    40    80    10   6.38 0.7315
WVFGRD96   22.0    40    80    10   6.39 0.7192
WVFGRD96   23.0    40    80    10   6.40 0.7062
WVFGRD96   24.0    40    80    10   6.40 0.6928
WVFGRD96   25.0    40    80    10   6.41 0.6791
WVFGRD96   26.0    40    80    10   6.41 0.6649
WVFGRD96   27.0    40    80   -10   6.42 0.6506
WVFGRD96   28.0    40    80   -10   6.43 0.6368
WVFGRD96   29.0    40    80   -10   6.43 0.6227

The best solution is

WVFGRD96   12.0    45    75    10   6.31 0.7949

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Wed Jan 6 21:06:11 CST 2021