Location

Location ANSS

2020/03/22 05:24:03 45.87 16.02 10.0 5.4 Croatia

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2020/03/22 05:24:03:0  45.87   16.02  10.0 5.4 Croatia
 
 Stations used:
   AC.KBN BW.BE1 BW.KW1 BW.MGS04 BW.RTBE BW.WETR GR.FUR 
   GR.GEC2 GR.GRA2 GR.GRC3 GR.UBR GR.WET HU.BEHE HU.BUD 
   HU.CSKK HU.MORH HU.MPLH HU.PSZ HU.SOP IU.GRFO MN.BLY MN.PDG 
   OE.ARSA OE.BIOA OE.CONA OE.CSNA OE.DAVA OE.KBA OE.MOA 
   OE.MYKA OE.OBKA OE.RONA OE.SOKA OE.VIE OX.ACOM OX.CGRP 
   OX.DRE OX.FUSE OX.PRED OX.SABO PL.NIE RO.MDVR SX.GUNZ 
   SX.WERD 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 6.68e+23 dyne-cm
  Mw = 5.15 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1       55    50    60
   NP2      277    48   121
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.68e+23     67     258
    N   0.00e+00     23      75
    P  -6.68e+23      1     166

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -6.23e+23
       Mxy     1.80e+23
       Mxz    -4.09e+22
       Myy     5.30e+22
       Myz    -2.34e+23
       Mzz     5.70e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ------------------------------          
           ----------------------------------        
          -----------#########---------------#       
         ------######################--------##      
        ----#############################----###     
        -##################################-####     
       -###################################--####    
       ##############   ##################-----##    
       ############## T #################-------#    
       ##############   ################---------    
        ##############################----------     
        ############################------------     
         #########################-------------      
          #####################---------------       
           ###############-------------------        
             ------------------------------          
              ----------------------------           
                 ---------------   ----              
                     ----------- P                   
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.70e+23  -4.09e+22   2.34e+23 
 -4.09e+22  -6.23e+23  -1.80e+23 
  2.34e+23  -1.80e+23   5.30e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200322052403/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 55
      DIP = 50
     RAKE = 60
       MW = 5.15
       HS = 8.0

The NDK file is 20200322052403.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSW
OTHER
 USGS/SLU Moment Tensor Solution
 ENS  2020/03/22 05:24:03:0  45.87   16.02  10.0 5.4 Croatia
 
 Stations used:
   AC.KBN BW.BE1 BW.KW1 BW.MGS04 BW.RTBE BW.WETR GR.FUR 
   GR.GEC2 GR.GRA2 GR.GRC3 GR.UBR GR.WET HU.BEHE HU.BUD 
   HU.CSKK HU.MORH HU.MPLH HU.PSZ HU.SOP IU.GRFO MN.BLY MN.PDG 
   OE.ARSA OE.BIOA OE.CONA OE.CSNA OE.DAVA OE.KBA OE.MOA 
   OE.MYKA OE.OBKA OE.RONA OE.SOKA OE.VIE OX.ACOM OX.CGRP 
   OX.DRE OX.FUSE OX.PRED OX.SABO PL.NIE RO.MDVR SX.GUNZ 
   SX.WERD 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 6.68e+23 dyne-cm
  Mw = 5.15 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1       55    50    60
   NP2      277    48   121
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.68e+23     67     258
    N   0.00e+00     23      75
    P  -6.68e+23      1     166

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -6.23e+23
       Mxy     1.80e+23
       Mxz    -4.09e+22
       Myy     5.30e+22
       Myz    -2.34e+23
       Mzz     5.70e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ------------------------------          
           ----------------------------------        
          -----------#########---------------#       
         ------######################--------##      
        ----#############################----###     
        -##################################-####     
       -###################################--####    
       ##############   ##################-----##    
       ############## T #################-------#    
       ##############   ################---------    
        ##############################----------     
        ############################------------     
         #########################-------------      
          #####################---------------       
           ###############-------------------        
             ------------------------------          
              ----------------------------           
                 ---------------   ----              
                     ----------- P                   
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.70e+23  -4.09e+22   2.34e+23 
 -4.09e+22  -6.23e+23  -1.80e+23 
  2.34e+23  -1.80e+23   5.30e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200322052403/index.html
	
W-phase Moment Tensor (Mww)
Moment 1.205e+17 N-m
Magnitude 5.32 Mww
Depth 11.5 km
Percent DC 98%
Half Duration 1.18 s
Catalog US
Data Source US 1
Contributor US 1

Nodal Planes
Plane Strike Dip Rake
NP1 263 39 97
NP2 74 51 84

Principal Axes
Axis Value Plunge Azimuth
T 1.199e+17 N-m 82 310
N 0.011e+17 N-m 5 78
P -1.211e+17 N-m 6 168

        
EMSC-CSEM Summary

        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   210    90    10   4.76 0.3023
WVFGRD96    2.0    30    90   -20   4.87 0.3769
WVFGRD96    3.0    45    60    50   4.99 0.4261
WVFGRD96    4.0    50    55    55   5.04 0.4804
WVFGRD96    5.0    50    55    55   5.06 0.5174
WVFGRD96    6.0    55    50    60   5.09 0.5371
WVFGRD96    7.0    45    55    45   5.08 0.5413
WVFGRD96    8.0    55    50    60   5.15 0.5770
WVFGRD96    9.0    45    55    45   5.13 0.5585
WVFGRD96   10.0    40    60    35   5.11 0.5412
WVFGRD96   11.0   215    70    25   5.11 0.5338
WVFGRD96   12.0   215    70    20   5.11 0.5246
WVFGRD96   13.0   215    75    20   5.12 0.5157
WVFGRD96   14.0    30    90   -20   5.12 0.5073
WVFGRD96   15.0   215    75    20   5.13 0.5006
WVFGRD96   16.0   215    75    20   5.14 0.4943
WVFGRD96   17.0   210    80   -15   5.15 0.4902
WVFGRD96   18.0   210    80   -15   5.15 0.4856
WVFGRD96   19.0   210    80   -15   5.16 0.4797
WVFGRD96   20.0   210    80   -15   5.17 0.4734
WVFGRD96   21.0   210    80   -15   5.18 0.4673
WVFGRD96   22.0   210    80   -15   5.19 0.4610
WVFGRD96   23.0   210    80   -15   5.19 0.4542
WVFGRD96   24.0   210    80   -15   5.20 0.4469
WVFGRD96   25.0   210    80   -15   5.21 0.4389
WVFGRD96   26.0   210    80   -15   5.21 0.4309
WVFGRD96   27.0   210    80   -15   5.22 0.4223
WVFGRD96   28.0   210    80   -15   5.23 0.4134
WVFGRD96   29.0   210    80   -15   5.23 0.4043

The best solution is

WVFGRD96    8.0    55    50    60   5.15 0.5770

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Mar 22 10:29:58 CDT 2020