Location

Location ANSS

2018/08/11 15:38:34 41.58 20.12 10.0 5.1 Albania

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2018/08/11 15:38:34:6  41.58   20.12  10.0 5.1 Albania
 
 Stations used:
   BS.ELND CL.AGRP CL.MG00 CL.ROD3 CR.STON HA.AXAR HA.VILL 
   HL.DION HL.EVR HL.JAN HL.KEK HL.KLV HL.KZN HL.LIA HL.NEO 
   HL.NVR HL.PENT HL.PRK HL.PTL HL.RDO HL.RLS HL.THL HL.VLS 
   HP.ANX HP.FSK HT.ALN HT.DMLN HT.FNA HT.HORT HT.IGT HT.KAVA 
   HT.KOKK HT.KPRO HT.LKD2 HT.LRSO HT.NEST HT.NYDR HT.SOH 
   HT.THAS HT.THE HT.TSLK HU.KOVH KO.GADA ME.KOME RO.ARR 
   RO.BANR RO.BZS RO.DEV RO.DRGR RO.GZR RO.HERR RO.LOT RO.MDVR 
   RO.PUNG RO.SIRR RO.VLAD SJ.BBLS 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 4.57e+23 dyne-cm
  Mw = 5.04 
  Z  = 24 km
  Plane   Strike  Dip  Rake
   NP1       80    65    40
   NP2      330    54   149
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.57e+23     45     300
    N   0.00e+00     44     107
    P  -4.57e+23      6     203

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.27e+23
       Mxy    -2.60e+23
       Mxz     1.60e+23
       Myy     1.02e+23
       Myz    -1.79e+23
       Mzz     2.25e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ###-------------------              
              ###########-----------------           
             ###############---------------          
           ###################---------------        
          ######################--------------       
         ########   #############--------------      
        ######### T ###############-------------     
        #########   ################------------     
       ##############################-----------#    
       ###############################--------###    
       ###############################-----######    
       ################################-#########    
        -###########################---#########     
        -------#############------------########     
         -------------------------------#######      
          ------------------------------######       
           -----------------------------#####        
             ---------------------------###          
              -----   -----------------###           
                 -- P ----------------#              
                      -------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.25e+23   1.60e+23   1.79e+23 
  1.60e+23  -3.27e+23   2.60e+23 
  1.79e+23   2.60e+23   1.02e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180811153834/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 80
      DIP = 65
     RAKE = 40
       MW = 5.04
       HS = 24.0

The NDK file is 20180811153834.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2018/08/11 15:38:34:6  41.58   20.12  10.0 5.1 Albania
 
 Stations used:
   BS.ELND CL.AGRP CL.MG00 CL.ROD3 CR.STON HA.AXAR HA.VILL 
   HL.DION HL.EVR HL.JAN HL.KEK HL.KLV HL.KZN HL.LIA HL.NEO 
   HL.NVR HL.PENT HL.PRK HL.PTL HL.RDO HL.RLS HL.THL HL.VLS 
   HP.ANX HP.FSK HT.ALN HT.DMLN HT.FNA HT.HORT HT.IGT HT.KAVA 
   HT.KOKK HT.KPRO HT.LKD2 HT.LRSO HT.NEST HT.NYDR HT.SOH 
   HT.THAS HT.THE HT.TSLK HU.KOVH KO.GADA ME.KOME RO.ARR 
   RO.BANR RO.BZS RO.DEV RO.DRGR RO.GZR RO.HERR RO.LOT RO.MDVR 
   RO.PUNG RO.SIRR RO.VLAD SJ.BBLS 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 4.57e+23 dyne-cm
  Mw = 5.04 
  Z  = 24 km
  Plane   Strike  Dip  Rake
   NP1       80    65    40
   NP2      330    54   149
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.57e+23     45     300
    N   0.00e+00     44     107
    P  -4.57e+23      6     203

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.27e+23
       Mxy    -2.60e+23
       Mxz     1.60e+23
       Myy     1.02e+23
       Myz    -1.79e+23
       Mzz     2.25e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ###-------------------              
              ###########-----------------           
             ###############---------------          
           ###################---------------        
          ######################--------------       
         ########   #############--------------      
        ######### T ###############-------------     
        #########   ################------------     
       ##############################-----------#    
       ###############################--------###    
       ###############################-----######    
       ################################-#########    
        -###########################---#########     
        -------#############------------########     
         -------------------------------#######      
          ------------------------------######       
           -----------------------------#####        
             ---------------------------###          
              -----   -----------------###           
                 -- P ----------------#              
                      -------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.25e+23   1.60e+23   1.79e+23 
  1.60e+23  -3.27e+23   2.60e+23 
  1.79e+23   2.60e+23   1.02e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180811153834/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    55    50   -75   4.64 0.3882
WVFGRD96    2.0    55    45   -70   4.73 0.4567
WVFGRD96    3.0    55    45   -75   4.80 0.4796
WVFGRD96    4.0    70    55   -55   4.81 0.4313
WVFGRD96    5.0    75    70   -45   4.79 0.4014
WVFGRD96    6.0    80    80    40   4.78 0.4084
WVFGRD96    7.0    80    80    40   4.80 0.4389
WVFGRD96    8.0    75    85    45   4.84 0.4620
WVFGRD96    9.0    80    80    45   4.86 0.4944
WVFGRD96   10.0    80    75    45   4.88 0.5245
WVFGRD96   11.0    80    75    45   4.89 0.5530
WVFGRD96   12.0    80    75    45   4.90 0.5781
WVFGRD96   13.0    85    65    45   4.93 0.6013
WVFGRD96   14.0    85    65    45   4.94 0.6228
WVFGRD96   15.0    85    65    45   4.95 0.6410
WVFGRD96   16.0    85    65    45   4.96 0.6565
WVFGRD96   17.0    80    70    40   4.96 0.6695
WVFGRD96   18.0    80    65    40   4.98 0.6808
WVFGRD96   19.0    80    65    40   4.99 0.6908
WVFGRD96   20.0    80    65    40   5.00 0.6986
WVFGRD96   21.0    80    65    40   5.01 0.7036
WVFGRD96   22.0    80    65    40   5.02 0.7080
WVFGRD96   23.0    80    65    40   5.03 0.7106
WVFGRD96   24.0    80    65    40   5.04 0.7119
WVFGRD96   25.0    80    65    40   5.05 0.7116
WVFGRD96   26.0    75    70    40   5.05 0.7100
WVFGRD96   27.0    75    70    40   5.05 0.7076
WVFGRD96   28.0    75    70    40   5.06 0.7039
WVFGRD96   29.0    75    70    40   5.07 0.6989
WVFGRD96   30.0    75    70    40   5.08 0.6930
WVFGRD96   31.0    75    70    40   5.09 0.6861
WVFGRD96   32.0    75    70    40   5.09 0.6787
WVFGRD96   33.0    75    70    40   5.10 0.6705
WVFGRD96   34.0    75    70    40   5.11 0.6614
WVFGRD96   35.0    75    65    40   5.12 0.6520
WVFGRD96   36.0    75    65    40   5.13 0.6423
WVFGRD96   37.0    75    65    35   5.15 0.6329
WVFGRD96   38.0    75    65    35   5.15 0.6234
WVFGRD96   39.0    75    70    35   5.16 0.6132
WVFGRD96   40.0    75    70    45   5.24 0.5998
WVFGRD96   41.0    75    70    45   5.25 0.5880
WVFGRD96   42.0    80    65    45   5.26 0.5753
WVFGRD96   43.0    80    65    45   5.27 0.5619
WVFGRD96   44.0    80    65    45   5.27 0.5479
WVFGRD96   45.0    80    65    45   5.28 0.5334
WVFGRD96   46.0    75    70    45   5.27 0.5193
WVFGRD96   47.0    75    70    40   5.28 0.5055
WVFGRD96   48.0    75    70    40   5.28 0.4913
WVFGRD96   49.0    75    70    40   5.29 0.4770

The best solution is

WVFGRD96   24.0    80    65    40   5.04 0.7119

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sat Aug 11 20:47:51 CDT 2018