USGS/SLU Moment Tensor Solution
ENS 2018/02/21 23:41:59:4 42.03 24.88 10.0 4.8 Bulgaria
Stations used:
HT.ALN HT.FNA HT.GRG HT.HORT HT.SIGR HT.SOH HT.SRS HT.THE
HU.MORH SJ.BBLS
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 2.60e+22 dyne-cm
Mw = 4.21
Z = 14 km
Plane Strike Dip Rake
NP1 64 76 154
NP2 160 65 15
Principal Axes:
Axis Value Plunge Azimuth
T 2.60e+22 28 20
N 0.00e+00 61 218
P -2.60e+22 8 114
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.40e+22
Mxy 1.58e+22
Mxz 1.15e+22
Myy -1.92e+22
Myz 4.35e+20
Mzz 5.16e+21
##############
---###################
------############ #######
-------############ T ########
--------############# ##########
---------###########################
-----------##########################-
------------########################----
------------######################------
--------------##################----------
--------------################------------
---------------############---------------
---------------########-------------------
---------------###----------------------
--------------##-------------------- -
-------#########------------------- P
################------------------
################------------------
###############---------------
################------------
###############-------
##############
Global CMT Convention Moment Tensor:
R T P
5.16e+21 1.15e+22 -4.35e+20
1.15e+22 1.40e+22 -1.58e+22
-4.35e+20 -1.58e+22 -1.92e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180221234159/index.html
|
STK = 160
DIP = 65
RAKE = 15
MW = 4.21
HS = 14.0
The NDK file is 20180221234159.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution
ENS 2018/02/21 23:41:59:4 42.03 24.88 10.0 4.8 Bulgaria
Stations used:
HT.ALN HT.FNA HT.GRG HT.HORT HT.SIGR HT.SOH HT.SRS HT.THE
HU.MORH SJ.BBLS
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 2.60e+22 dyne-cm
Mw = 4.21
Z = 14 km
Plane Strike Dip Rake
NP1 64 76 154
NP2 160 65 15
Principal Axes:
Axis Value Plunge Azimuth
T 2.60e+22 28 20
N 0.00e+00 61 218
P -2.60e+22 8 114
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.40e+22
Mxy 1.58e+22
Mxz 1.15e+22
Myy -1.92e+22
Myz 4.35e+20
Mzz 5.16e+21
##############
---###################
------############ #######
-------############ T ########
--------############# ##########
---------###########################
-----------##########################-
------------########################----
------------######################------
--------------##################----------
--------------################------------
---------------############---------------
---------------########-------------------
---------------###----------------------
--------------##-------------------- -
-------#########------------------- P
################------------------
################------------------
###############---------------
################------------
###############-------
##############
Global CMT Convention Moment Tensor:
R T P
5.16e+21 1.15e+22 -4.35e+20
1.15e+22 1.40e+22 -1.58e+22
-4.35e+20 -1.58e+22 -1.92e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180221234159/index.html
|
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 160 85 0 3.86 0.3589
WVFGRD96 2.0 160 90 0 3.95 0.4393
WVFGRD96 3.0 160 70 -5 4.00 0.4630
WVFGRD96 4.0 160 50 -5 4.07 0.4863
WVFGRD96 5.0 160 50 0 4.09 0.5145
WVFGRD96 6.0 165 55 10 4.11 0.5424
WVFGRD96 7.0 165 60 10 4.13 0.5684
WVFGRD96 8.0 325 65 -40 4.16 0.5870
WVFGRD96 9.0 325 65 -35 4.16 0.6066
WVFGRD96 10.0 325 65 -35 4.17 0.6201
WVFGRD96 11.0 325 65 -35 4.18 0.6278
WVFGRD96 12.0 325 65 -30 4.19 0.6322
WVFGRD96 13.0 165 60 10 4.23 0.6342
WVFGRD96 14.0 160 65 15 4.21 0.6346
WVFGRD96 15.0 160 65 15 4.22 0.6328
WVFGRD96 16.0 160 65 15 4.23 0.6281
WVFGRD96 17.0 160 65 15 4.24 0.6215
WVFGRD96 18.0 160 65 15 4.25 0.6125
WVFGRD96 19.0 160 65 15 4.26 0.6026
WVFGRD96 20.0 160 65 15 4.27 0.5913
WVFGRD96 21.0 160 65 15 4.28 0.5787
WVFGRD96 22.0 160 70 15 4.29 0.5663
WVFGRD96 23.0 155 65 20 4.28 0.5542
WVFGRD96 24.0 155 65 20 4.28 0.5417
WVFGRD96 25.0 155 65 20 4.29 0.5287
WVFGRD96 26.0 335 70 20 4.29 0.5150
WVFGRD96 27.0 335 70 20 4.30 0.5040
WVFGRD96 28.0 335 70 20 4.31 0.4935
WVFGRD96 29.0 335 70 20 4.31 0.4830
The best solution is
WVFGRD96 14.0 160 65 15 4.21 0.6346
The mechanism correspond to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
|
|
|
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: