The location given here was made using the Comtuer Programs in Seismology program elocate. This was done because the initial plot of time delays indicated a locaiton about 10 km north and 2 seconds later than the EMSC location. The results of this location are given in elocate.txt. The takeoff angles from this solution were used to compare first motion data to the waveform inversion mechanism.
USGS/SLU Moment Tensor Solution
ENS 2018/02/17 14:31:07:0 51.76 -3.84 16.0 4.7 Wales-England
Stations used:
BN.LLW EI.DSB EI.IWEX GB.CCA1 GB.CWF GB.DRUM GB.DYA GB.EDI
GB.EDMD GB.ESK GB.HMNX GB.HPK GB.HTL GB.KESW GB.LBWR GB.LMK
GB.MCH1 GB.WACR GB.WLF1
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Best Fitting Double Couple
Mo = 8.91e+21 dyne-cm
Mw = 3.90
Z = 11 km
Plane Strike Dip Rake
NP1 15 75 -20
NP2 110 71 -164
Principal Axes:
Axis Value Plunge Azimuth
T 8.91e+21 3 63
N 0.00e+00 65 160
P -8.91e+21 25 332
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.94e+21
Mxy 6.62e+21
Mxz -2.78e+21
Myy 5.47e+21
Myz 1.99e+21
Mzz -1.52e+21
-------------#
-----------------#####
----- ------------########
------ P ------------#########
-------- ------------###########
------------------------###########
-------------------------########### T
#------------------------############
###----------------------###############
######--------------------################
########-----------------#################
###########--------------#################
###############---------##################
##################-----#################
######################--################
####################------------------
###################-----------------
#################-----------------
##############----------------
############----------------
########--------------
##------------
Global CMT Convention Moment Tensor:
R T P
-1.52e+21 -2.78e+21 -1.99e+21
-2.78e+21 -3.94e+21 -6.62e+21
-1.99e+21 -6.62e+21 5.47e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180217143107/index.html
|
STK = 15
DIP = 75
RAKE = -20
MW = 3.90
HS = 11.0
The NDK file is 20180217143107.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution
ENS 2018/02/17 14:31:07:0 51.76 -3.84 16.0 4.7 Wales-England
Stations used:
BN.LLW EI.DSB EI.IWEX GB.CCA1 GB.CWF GB.DRUM GB.DYA GB.EDI
GB.EDMD GB.ESK GB.HMNX GB.HPK GB.HTL GB.KESW GB.LBWR GB.LMK
GB.MCH1 GB.WACR GB.WLF1
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Best Fitting Double Couple
Mo = 8.91e+21 dyne-cm
Mw = 3.90
Z = 11 km
Plane Strike Dip Rake
NP1 15 75 -20
NP2 110 71 -164
Principal Axes:
Axis Value Plunge Azimuth
T 8.91e+21 3 63
N 0.00e+00 65 160
P -8.91e+21 25 332
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.94e+21
Mxy 6.62e+21
Mxz -2.78e+21
Myy 5.47e+21
Myz 1.99e+21
Mzz -1.52e+21
-------------#
-----------------#####
----- ------------########
------ P ------------#########
-------- ------------###########
------------------------###########
-------------------------########### T
#------------------------############
###----------------------###############
######--------------------################
########-----------------#################
###########--------------#################
###############---------##################
##################-----#################
######################--################
####################------------------
###################-----------------
#################-----------------
##############----------------
############----------------
########--------------
##------------
Global CMT Convention Moment Tensor:
R T P
-1.52e+21 -2.78e+21 -1.99e+21
-2.78e+21 -3.94e+21 -6.62e+21
-1.99e+21 -6.62e+21 5.47e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180217143107/index.html
|
|
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 280 60 -25 3.79 0.3726
WVFGRD96 2.0 290 75 -15 3.78 0.3947
WVFGRD96 3.0 290 80 -10 3.79 0.4088
WVFGRD96 4.0 115 75 10 3.82 0.4216
WVFGRD96 5.0 115 75 15 3.84 0.4305
WVFGRD96 6.0 15 75 -25 3.86 0.4352
WVFGRD96 7.0 15 75 -25 3.87 0.4466
WVFGRD96 8.0 15 75 -25 3.88 0.4548
WVFGRD96 9.0 15 75 -20 3.88 0.4605
WVFGRD96 10.0 15 75 -20 3.90 0.4631
WVFGRD96 11.0 15 75 -20 3.90 0.4646
WVFGRD96 12.0 15 75 -20 3.91 0.4636
WVFGRD96 13.0 15 80 -20 3.91 0.4611
WVFGRD96 14.0 15 80 -20 3.92 0.4578
WVFGRD96 15.0 20 90 -15 3.92 0.4536
WVFGRD96 16.0 20 90 -15 3.93 0.4496
WVFGRD96 17.0 205 85 15 3.94 0.4446
WVFGRD96 18.0 205 85 15 3.95 0.4387
WVFGRD96 19.0 205 85 15 3.96 0.4322
WVFGRD96 20.0 205 80 20 3.97 0.4260
WVFGRD96 21.0 205 80 20 3.98 0.4195
WVFGRD96 22.0 205 80 15 3.98 0.4123
WVFGRD96 23.0 205 80 20 3.99 0.4047
WVFGRD96 24.0 205 80 20 4.00 0.3963
WVFGRD96 25.0 205 80 20 4.00 0.3871
WVFGRD96 26.0 205 80 20 4.00 0.3774
WVFGRD96 27.0 205 80 15 4.00 0.3670
WVFGRD96 28.0 205 80 20 4.01 0.3558
WVFGRD96 29.0 205 85 20 4.02 0.3442
The best solution is
WVFGRD96 11.0 15 75 -20 3.90 0.4646
The mechanism correspond to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
|
|
|
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: