USGS/SLU Moment Tensor Solution
ENS 2018/02/03 12:53:11:0 43.38 16.83 10.0 4.5 Bosnia
Stations used:
CR.STON HT.GRG MN.BLY MN.BZS RO.BAIL RO.BANR RO.GZR RO.HERR
RO.LOT RO.MDVR RO.PUNG SJ.BBLS SJ.FRGS SL.BOJS SL.GBRS
SL.SKDS
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 8.41e+22 dyne-cm
Mw = 4.55
Z = 20 km
Plane Strike Dip Rake
NP1 210 85 -15
NP2 301 75 -175
Principal Axes:
Axis Value Plunge Azimuth
T 8.41e+22 7 257
N 0.00e+00 74 12
P -8.41e+22 14 165
Moment Tensor: (dyne-cm)
Component Value
Mxx -6.92e+22
Mxy 3.88e+22
Mxz 1.69e+22
Myy 7.30e+22
Myz -1.50e+22
Mzz -3.78e+21
--------------
---------------------#
-----------------------#####
----------------------########
-----------------------###########
####-------------------#############
###########------------###############
################------##################
####################-###################
#####################---##################
####################-------###############
###################----------#############
# ##############-------------###########
T #############-----------------#######
############-------------------######
#############----------------------###
###########------------------------#
#########-------------------------
######------------------------
#####------------ --------
#------------- P -----
---------- -
Global CMT Convention Moment Tensor:
R T P
-3.78e+21 1.69e+22 1.50e+22
1.69e+22 -6.92e+22 -3.88e+22
1.50e+22 -3.88e+22 7.30e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180203125311/index.html
|
STK = 210
DIP = 85
RAKE = -15
MW = 4.55
HS = 20.0
The NDK file is 20180203125311.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution
ENS 2018/02/03 12:53:11:0 43.38 16.83 10.0 4.5 Bosnia
Stations used:
CR.STON HT.GRG MN.BLY MN.BZS RO.BAIL RO.BANR RO.GZR RO.HERR
RO.LOT RO.MDVR RO.PUNG SJ.BBLS SJ.FRGS SL.BOJS SL.GBRS
SL.SKDS
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 8.41e+22 dyne-cm
Mw = 4.55
Z = 20 km
Plane Strike Dip Rake
NP1 210 85 -15
NP2 301 75 -175
Principal Axes:
Axis Value Plunge Azimuth
T 8.41e+22 7 257
N 0.00e+00 74 12
P -8.41e+22 14 165
Moment Tensor: (dyne-cm)
Component Value
Mxx -6.92e+22
Mxy 3.88e+22
Mxz 1.69e+22
Myy 7.30e+22
Myz -1.50e+22
Mzz -3.78e+21
--------------
---------------------#
-----------------------#####
----------------------########
-----------------------###########
####-------------------#############
###########------------###############
################------##################
####################-###################
#####################---##################
####################-------###############
###################----------#############
# ##############-------------###########
T #############-----------------#######
############-------------------######
#############----------------------###
###########------------------------#
#########-------------------------
######------------------------
#####------------ --------
#------------- P -----
---------- -
Global CMT Convention Moment Tensor:
R T P
-3.78e+21 1.69e+22 1.50e+22
1.69e+22 -6.92e+22 -3.88e+22
1.50e+22 -3.88e+22 7.30e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180203125311/index.html
|
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 35 60 25 3.98 0.1757
WVFGRD96 2.0 35 60 25 4.12 0.2159
WVFGRD96 3.0 25 85 0 4.20 0.2184
WVFGRD96 4.0 205 90 0 4.27 0.2097
WVFGRD96 5.0 25 80 0 4.28 0.1800
WVFGRD96 6.0 30 70 -15 4.22 0.1861
WVFGRD96 7.0 30 70 -15 4.23 0.1997
WVFGRD96 8.0 30 70 -15 4.31 0.2115
WVFGRD96 9.0 30 70 -15 4.33 0.2204
WVFGRD96 10.0 215 70 -25 4.29 0.2317
WVFGRD96 11.0 210 70 -20 4.35 0.2484
WVFGRD96 12.0 210 70 -20 4.37 0.2634
WVFGRD96 13.0 215 75 -20 4.38 0.2770
WVFGRD96 14.0 210 75 -15 4.44 0.2902
WVFGRD96 15.0 210 75 -15 4.46 0.3016
WVFGRD96 16.0 210 75 -15 4.47 0.3105
WVFGRD96 17.0 210 80 -15 4.50 0.3182
WVFGRD96 18.0 210 80 -15 4.52 0.3239
WVFGRD96 19.0 210 80 -15 4.53 0.3267
WVFGRD96 20.0 210 85 -15 4.55 0.3278
WVFGRD96 21.0 210 85 -15 4.57 0.3277
WVFGRD96 22.0 210 85 -10 4.60 0.3257
WVFGRD96 23.0 30 90 15 4.59 0.3199
WVFGRD96 24.0 30 90 10 4.62 0.3155
WVFGRD96 25.0 30 90 10 4.62 0.3101
WVFGRD96 26.0 30 90 10 4.63 0.3036
WVFGRD96 27.0 30 90 10 4.63 0.2956
WVFGRD96 28.0 30 90 10 4.64 0.2870
WVFGRD96 29.0 30 90 10 4.64 0.2770
The best solution is
WVFGRD96 20.0 210 85 -15 4.55 0.3278
The mechanism correspond to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
|
|
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: