2016/04/25 10:28:23 48.11 16.16 3 4.2 Austria
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution
ENS 2016/04/25 10:28:23:0 48.11 16.16 3.0 4.2 Austria
Stations used:
CZ.CKRC CZ.KHC CZ.PRU CZ.TREC GR.BRG GR.GEC2 GR.MOX HU.EGYH
HU.MPLH HU.SOP MN.TRI OE.ABTA OE.ARSA OE.CONA OE.CSNA
OE.KBA OE.OBKA PL.KSP SL.BOJS SL.CRES SL.KOGS SL.MOZS
SL.VISS SL.VNDS SX.NEUB TH.HKWD
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 3.16e+21 dyne-cm
Mw = 3.60
Z = 8 km
Plane Strike Dip Rake
NP1 105 65 50
NP2 348 46 144
Principal Axes:
Axis Value Plunge Azimuth
T 3.16e+21 52 327
N 0.00e+00 36 125
P -3.16e+21 11 223
Moment Tensor: (dyne-cm)
Component Value
Mxx -8.10e+20
Mxy -2.06e+21
Mxz 1.73e+21
Myy -1.05e+21
Myz -4.27e+20
Mzz 1.86e+21
#####---------
############----------
##################----------
####################----------
########################----------
########### ############----------
############ T #############----------
############# ##############----------
##############################----------
---#############################----------
-----###########################----------
-------#########################----------
-----------#####################----------
--------------#################---------
--------------------###########------###
------------------------------########
-----------------------------#######
--- ---------------------#######
- P --------------------######
-------------------######
------------------####
------------##
Global CMT Convention Moment Tensor:
R T P
1.86e+21 1.73e+21 4.27e+20
1.73e+21 -8.10e+20 2.06e+21
4.27e+20 2.06e+21 -1.05e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20160425102823/index.html
|
STK = 105
DIP = 65
RAKE = 50
MW = 3.60
HS = 8.0
The NDK file is 20160425102823.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution
ENS 2016/04/25 10:28:23:0 48.11 16.16 3.0 4.2 Austria
Stations used:
CZ.CKRC CZ.KHC CZ.PRU CZ.TREC GR.BRG GR.GEC2 GR.MOX HU.EGYH
HU.MPLH HU.SOP MN.TRI OE.ABTA OE.ARSA OE.CONA OE.CSNA
OE.KBA OE.OBKA PL.KSP SL.BOJS SL.CRES SL.KOGS SL.MOZS
SL.VISS SL.VNDS SX.NEUB TH.HKWD
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 3.16e+21 dyne-cm
Mw = 3.60
Z = 8 km
Plane Strike Dip Rake
NP1 105 65 50
NP2 348 46 144
Principal Axes:
Axis Value Plunge Azimuth
T 3.16e+21 52 327
N 0.00e+00 36 125
P -3.16e+21 11 223
Moment Tensor: (dyne-cm)
Component Value
Mxx -8.10e+20
Mxy -2.06e+21
Mxz 1.73e+21
Myy -1.05e+21
Myz -4.27e+20
Mzz 1.86e+21
#####---------
############----------
##################----------
####################----------
########################----------
########### ############----------
############ T #############----------
############# ##############----------
##############################----------
---#############################----------
-----###########################----------
-------#########################----------
-----------#####################----------
--------------#################---------
--------------------###########------###
------------------------------########
-----------------------------#######
--- ---------------------#######
- P --------------------######
-------------------######
------------------####
------------##
Global CMT Convention Moment Tensor:
R T P
1.86e+21 1.73e+21 4.27e+20
1.73e+21 -8.10e+20 2.06e+21
4.27e+20 2.06e+21 -1.05e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20160425102823/index.html
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 270 90 0 3.26 0.3174
WVFGRD96 2.0 90 85 -15 3.36 0.3423
WVFGRD96 3.0 90 90 -40 3.45 0.3835
WVFGRD96 4.0 100 75 50 3.52 0.4370
WVFGRD96 5.0 100 75 45 3.52 0.4736
WVFGRD96 6.0 100 70 45 3.54 0.4934
WVFGRD96 7.0 95 80 35 3.55 0.5003
WVFGRD96 8.0 105 65 50 3.60 0.5170
WVFGRD96 9.0 100 70 45 3.61 0.5142
WVFGRD96 10.0 90 85 30 3.63 0.5139
WVFGRD96 11.0 90 90 25 3.65 0.5114
WVFGRD96 12.0 265 80 -20 3.69 0.5145
WVFGRD96 13.0 265 80 -20 3.70 0.5055
WVFGRD96 14.0 265 80 -20 3.71 0.4923
WVFGRD96 15.0 90 90 20 3.69 0.4725
WVFGRD96 16.0 90 90 20 3.70 0.4573
WVFGRD96 17.0 90 90 20 3.71 0.4406
WVFGRD96 18.0 90 90 15 3.71 0.4220
WVFGRD96 19.0 90 90 15 3.72 0.4034
WVFGRD96 20.0 270 90 -15 3.73 0.3841
WVFGRD96 21.0 90 90 15 3.73 0.3637
WVFGRD96 22.0 270 90 -15 3.74 0.3447
WVFGRD96 23.0 90 85 20 3.74 0.3289
WVFGRD96 24.0 90 85 20 3.74 0.3152
WVFGRD96 25.0 170 70 -60 3.70 0.3157
WVFGRD96 26.0 170 70 -60 3.71 0.3186
WVFGRD96 27.0 170 70 -55 3.72 0.3212
WVFGRD96 28.0 170 70 -55 3.73 0.3214
WVFGRD96 29.0 170 70 -55 3.74 0.3207
The best solution is
WVFGRD96 8.0 105 65 50 3.60 0.5170
The mechanism correspond to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
|
|
|
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Mon Apr 25 08:35:01 CDT 2016