Location

2016/02/14 14:51:30 43.05 17.42 10 4.6 Croatia

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports archive

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2016/02/14 14:51:30:0  43.05   17.42  10.0 4.6 Croatia
 
 Stations used:
   GE.PSZ HU.AMBH HU.BEHE HU.BSZH HU.BUD HU.CSKK HU.EGYH 
   HU.KOVH HU.MORH HU.MPLH HU.SOP MN.BLY MN.DIVS MN.PDG MN.TRI 
   NI.ACOM NI.SABO OE.ARSA OE.CSNA OE.OBKA RO.BZS RO.GZR 
   SJ.BBLS SJ.FRGS SL.CADS SL.CEY SL.CRES SL.CRNS SL.GBAS 
   SL.GCIS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.MOZS SL.PERS 
   SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.06e+22 dyne-cm
  Mw = 3.95 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      265    70    65
   NP2      139    32   139
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.06e+22     58     141
    N   0.00e+00     23     274
    P  -1.06e+22     21      14

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -6.85e+21
       Mxy    -3.61e+21
       Mxz    -7.19e+21
       Myy     6.84e+20
       Myz     2.17e+21
       Mzz     6.17e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 -------------   ------              
              ---------------- P ---------           
             -----------------   ----------          
           ##--------------------------------        
          ##----------------------------------       
         ###-----------------------------------      
        ####------------------------------------     
        ###-------------#################-------     
       #####----###############################--    
       ####-#####################################    
       #----#####################################    
       ------####################################    
        ------##################   #############     
        -------################# T #############     
         -------################   ############      
          --------############################       
           ---------#########################        
             ---------#####################          
              ------------###############-           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  6.17e+21  -7.19e+21  -2.17e+21 
 -7.19e+21  -6.85e+21   3.61e+21 
 -2.17e+21   3.61e+21   6.84e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20160214145130/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 265
      DIP = 70
     RAKE = 65
       MW = 3.95
       HS = 16.0

The NDK file is 20160214145130.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2016/02/14 14:51:30:0  43.05   17.42  10.0 4.6 Croatia
 
 Stations used:
   GE.PSZ HU.AMBH HU.BEHE HU.BSZH HU.BUD HU.CSKK HU.EGYH 
   HU.KOVH HU.MORH HU.MPLH HU.SOP MN.BLY MN.DIVS MN.PDG MN.TRI 
   NI.ACOM NI.SABO OE.ARSA OE.CSNA OE.OBKA RO.BZS RO.GZR 
   SJ.BBLS SJ.FRGS SL.CADS SL.CEY SL.CRES SL.CRNS SL.GBAS 
   SL.GCIS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.MOZS SL.PERS 
   SL.ROBS SL.SKDS SL.VISS SL.VNDS SL.VOJS 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.06e+22 dyne-cm
  Mw = 3.95 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      265    70    65
   NP2      139    32   139
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.06e+22     58     141
    N   0.00e+00     23     274
    P  -1.06e+22     21      14

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -6.85e+21
       Mxy    -3.61e+21
       Mxz    -7.19e+21
       Myy     6.84e+20
       Myz     2.17e+21
       Mzz     6.17e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 -------------   ------              
              ---------------- P ---------           
             -----------------   ----------          
           ##--------------------------------        
          ##----------------------------------       
         ###-----------------------------------      
        ####------------------------------------     
        ###-------------#################-------     
       #####----###############################--    
       ####-#####################################    
       #----#####################################    
       ------####################################    
        ------##################   #############     
        -------################# T #############     
         -------################   ############      
          --------############################       
           ---------#########################        
             ---------#####################          
              ------------###############-           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  6.17e+21  -7.19e+21  -2.17e+21 
 -7.19e+21  -6.85e+21   3.61e+21 
 -2.17e+21   3.61e+21   6.84e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20160214145130/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    90    45    85   3.70 0.3315
WVFGRD96    2.0    90    50    85   3.78 0.3775
WVFGRD96    3.0    90    50    90   3.84 0.3741
WVFGRD96    4.0    90    55    90   3.86 0.3220
WVFGRD96    5.0    75    90   -60   3.83 0.2961
WVFGRD96    6.0    75    90   -60   3.83 0.3286
WVFGRD96    7.0    75    90   -60   3.83 0.3550
WVFGRD96    8.0   265    80    70   3.91 0.3783
WVFGRD96    9.0   265    75    70   3.91 0.4057
WVFGRD96   10.0   265    75    70   3.92 0.4305
WVFGRD96   11.0   265    75    70   3.92 0.4492
WVFGRD96   12.0   265    70    70   3.93 0.4649
WVFGRD96   13.0   265    70    70   3.94 0.4765
WVFGRD96   14.0   265    70    70   3.94 0.4839
WVFGRD96   15.0   265    70    70   3.95 0.4881
WVFGRD96   16.0   265    70    65   3.95 0.4897
WVFGRD96   17.0   260    70    65   3.96 0.4896
WVFGRD96   18.0   260    70    65   3.96 0.4877
WVFGRD96   19.0   260    70    65   3.97 0.4847
WVFGRD96   20.0   260    70    60   3.97 0.4804
WVFGRD96   21.0   260    75    60   3.98 0.4766
WVFGRD96   22.0   260    75    60   3.99 0.4706
WVFGRD96   23.0   260    75    60   4.00 0.4640
WVFGRD96   24.0   260    75    60   4.00 0.4565
WVFGRD96   25.0   255    75    55   4.01 0.4485
WVFGRD96   26.0   255    75    55   4.02 0.4403
WVFGRD96   27.0   255    75    55   4.02 0.4317
WVFGRD96   28.0   255    75    55   4.03 0.4225
WVFGRD96   29.0   255    75    55   4.03 0.4131

The best solution is

WVFGRD96   16.0   265    70    65   3.95 0.4897

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Sun Feb 14 21:56:54 CST 2016

Last Changed 2016/02/14