Location

2015/11/06 04:03:04 44.48 6.70 11 3.8 France

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports archive

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2015/11/06 04:03:04:0  44.48    6.70  11.0 3.8 France
 
 Stations used:
   CH.AIGLE CH.BALST CH.BNALP CH.BOURR CH.DIX CH.EMBD CH.FUSIO 
   CH.HASLI CH.LAUCH CH.LKBD2 CH.LLS CH.METMA CH.MMK CH.MTI02 
   CH.MUO CH.NALPS CH.ROTHE CH.SENIN CH.SIMPL CH.SLE CH.SULZ 
   CH.TORNY CH.VANNI CH.WIMIS CH.WOLEN FR.ARBF FR.BLAF FR.BSTF 
   FR.CALF FR.EILF FR.ESCA FR.GRN FR.ISO FR.MLYF FR.MVIF 
   FR.OG35 FR.OGAG FR.OGDI FR.OGGM FR.OGMO FR.OGSM FR.RSL 
   FR.RUSF FR.SAOF FR.SAUF FR.TURF GU.CIRO GU.ENR GU.LSD 
   GU.MGRO GU.SATI GU.TRAV IV.IMI IV.MONC IV.QLNO MN.BNI 
   RD.LOR RD.ORIF 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 5.31e+21 dyne-cm
  Mw = 3.75 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      350    53   -106
   NP2      195    40   -70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.31e+21      7      91
    N   0.00e+00     13     359
    P  -5.31e+21     76     208

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.54e+20
       Mxy    -2.17e+20
       Mxz     1.12e+21
       Myy     5.17e+21
       Myz     1.20e+21
       Mzz    -4.91e+21
                                                     
                                                     
                                                     
                                                     
                     #####-----####                  
                 #########---##########              
              ##########-------###########           
             #########----------###########          
           #########-------------############        
          #########---------------############       
         #########-----------------############      
        #########-------------------############     
        ########---------------------###########     
       #########---------------------############    
       #########---------------------#########       
       ########----------   ----------######## T     
       ########---------- P ----------########       
        #######----------   ----------##########     
        #######-----------------------##########     
         #######---------------------##########      
          ######---------------------#########       
           ######--------------------########        
             #####------------------#######          
              #####----------------#######           
                 ###--------------#####              
                     #-----------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.91e+21   1.12e+21  -1.20e+21 
  1.12e+21  -2.54e+20   2.17e+20 
 -1.20e+21   2.17e+20   5.17e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20151106040304/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 195
      DIP = 40
     RAKE = -70
       MW = 3.75
       HS = 8.0

The NDK file is 20151106040304.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
INGVTDMT
 USGS/SLU Moment Tensor Solution
 ENS  2015/11/06 04:03:04:0  44.48    6.70  11.0 3.8 France
 
 Stations used:
   CH.AIGLE CH.BALST CH.BNALP CH.BOURR CH.DIX CH.EMBD CH.FUSIO 
   CH.HASLI CH.LAUCH CH.LKBD2 CH.LLS CH.METMA CH.MMK CH.MTI02 
   CH.MUO CH.NALPS CH.ROTHE CH.SENIN CH.SIMPL CH.SLE CH.SULZ 
   CH.TORNY CH.VANNI CH.WIMIS CH.WOLEN FR.ARBF FR.BLAF FR.BSTF 
   FR.CALF FR.EILF FR.ESCA FR.GRN FR.ISO FR.MLYF FR.MVIF 
   FR.OG35 FR.OGAG FR.OGDI FR.OGGM FR.OGMO FR.OGSM FR.RSL 
   FR.RUSF FR.SAOF FR.SAUF FR.TURF GU.CIRO GU.ENR GU.LSD 
   GU.MGRO GU.SATI GU.TRAV IV.IMI IV.MONC IV.QLNO MN.BNI 
   RD.LOR RD.ORIF 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 5.31e+21 dyne-cm
  Mw = 3.75 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      350    53   -106
   NP2      195    40   -70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.31e+21      7      91
    N   0.00e+00     13     359
    P  -5.31e+21     76     208

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.54e+20
       Mxy    -2.17e+20
       Mxz     1.12e+21
       Myy     5.17e+21
       Myz     1.20e+21
       Mzz    -4.91e+21
                                                     
                                                     
                                                     
                                                     
                     #####-----####                  
                 #########---##########              
              ##########-------###########           
             #########----------###########          
           #########-------------############        
          #########---------------############       
         #########-----------------############      
        #########-------------------############     
        ########---------------------###########     
       #########---------------------############    
       #########---------------------#########       
       ########----------   ----------######## T     
       ########---------- P ----------########       
        #######----------   ----------##########     
        #######-----------------------##########     
         #######---------------------##########      
          ######---------------------#########       
           ######--------------------########        
             #####------------------#######          
              #####----------------#######           
                 ###--------------#####              
                     #-----------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.91e+21   1.12e+21  -1.20e+21 
  1.12e+21  -2.54e+20   2.17e+20 
 -1.20e+21   2.17e+20   5.17e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20151106040304/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    35    65   -25   3.35 0.2923
WVFGRD96    2.0    30    55   -45   3.52 0.4035
WVFGRD96    3.0    30    60   -50   3.57 0.4458
WVFGRD96    4.0    30    60   -50   3.60 0.4802
WVFGRD96    5.0    30    60   -45   3.61 0.5030
WVFGRD96    6.0    35    60   -40   3.62 0.5180
WVFGRD96    7.0    40    70   -30   3.61 0.5279
WVFGRD96    8.0   195    40   -70   3.75 0.5706
WVFGRD96    9.0   195    40   -70   3.75 0.5663
WVFGRD96   10.0   225    60   -20   3.67 0.5598
WVFGRD96   11.0   230    75    15   3.67 0.5605
WVFGRD96   12.0   230    75    15   3.68 0.5642
WVFGRD96   13.0   230    75    15   3.69 0.5652
WVFGRD96   14.0   230    75    15   3.70 0.5642
WVFGRD96   15.0   230    75    15   3.71 0.5617
WVFGRD96   16.0   230    75    15   3.72 0.5580
WVFGRD96   17.0   230    75    15   3.73 0.5531
WVFGRD96   18.0   230    75    15   3.73 0.5475
WVFGRD96   19.0   230    75    15   3.74 0.5417
WVFGRD96   20.0   230    75    15   3.75 0.5358
WVFGRD96   21.0   230    75    15   3.75 0.5291
WVFGRD96   22.0   230    75    15   3.76 0.5226
WVFGRD96   23.0   230    75    15   3.77 0.5160
WVFGRD96   24.0   230    75    15   3.77 0.5094
WVFGRD96   25.0   230    75    15   3.78 0.5028
WVFGRD96   26.0   225    75    10   3.78 0.4968
WVFGRD96   27.0   225    75    10   3.79 0.4909
WVFGRD96   28.0   225    75    10   3.79 0.4848
WVFGRD96   29.0   225    75    10   3.80 0.4788

The best solution is

WVFGRD96    8.0   195    40   -70   3.75 0.5706

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Fri Nov 6 12:04:49 CST 2015

Last Changed 2015/11/06