Location

2015/08/29 18:47:06 46.34 13.67 10 4.0 Slovenia

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports archive

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2015/08/29 18:47:06:0  46.34   13.67  10.0 4.0 Slovenia
 
 Stations used:
   CH.ACB CH.AIGLE CH.BALST CH.BERGE CH.BERNI CH.BNALP 
   CH.BOURR CH.DAGMA CH.DAVOX CH.EMBD CH.EMING CH.EMMET 
   CH.FIESA CH.FUSIO CH.HASLI CH.LAUCH CH.LIENZ CH.LLS 
   CH.METMA CH.MTI02 CH.MUGIO CH.MUO CH.NALPS CH.PANIX 
   CH.PLONS CH.ROMAN CH.ROTHE CH.SENIN CH.SLE CH.SULZ CH.TORNY 
   CH.VANNI CH.VDL CH.WILA CH.WIMIS CH.WOLEN GE.PSZ GR.UBR 
   HU.MPLH HU.SOP IV.BRMO IV.CTI IV.PTCC MN.BLY MN.DIVS MN.PDG 
   NI.ACOM NI.AGOR NI.CGRP NI.CIMO NI.CLUD NI.MPRI NI.SABO 
   NI.VARN NI.ZOU2 OE.ABTA OE.ARSA OE.CSNA OE.DAVA OE.FETA 
   OE.KBA OE.MOA OE.MYKA OE.OBKA OE.RETA OE.SOKA OE.WTTA 
   SI.LUSI SJ.BBLS SJ.FRGS SL.BOJS SL.CEY SL.CRES SL.CRNS 
   SL.DOBS SL.GBAS SL.GCIS SL.GORS SL.GROS SL.KOGS SL.LJU 
   SL.MOZS SL.PERS SL.SKDS SL.VISS SL.VNDS SL.VOJS 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.50e+22 dyne-cm
  Mw = 4.05 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1       80    70    65
   NP2      314    32   139
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.50e+22     58     316
    N   0.00e+00     23      89
    P  -1.50e+22     21     189

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.05e+22
       Mxy    -4.09e+21
       Mxz     9.85e+21
       Myy     1.77e+21
       Myz    -3.93e+21
       Mzz     8.72e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              --#############-------------           
             ####################----------          
           #########################---------        
          ############################--------       
         ############   ################-------      
        ############# T #################-------     
        #############   ##################------     
       ####################################-----#    
       #####################################-####    
       ###################################--#####    
       ###############################-------####    
        --#####################--------------###     
        -------------------------------------###     
         ------------------------------------##      
          -----------------------------------#       
           ---------------------------------#        
             -----------   ----------------          
              ---------- P ---------------           
                 -------   ------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.72e+21   9.85e+21   3.93e+21 
  9.85e+21  -1.05e+22   4.09e+21 
  3.93e+21   4.09e+21   1.77e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20150829184706/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 80
      DIP = 70
     RAKE = 65
       MW = 4.05
       HS = 10.0

The NDK file is 20150829184706.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2015/08/29 18:47:06:0  46.34   13.67  10.0 4.0 Slovenia
 
 Stations used:
   CH.ACB CH.AIGLE CH.BALST CH.BERGE CH.BERNI CH.BNALP 
   CH.BOURR CH.DAGMA CH.DAVOX CH.EMBD CH.EMING CH.EMMET 
   CH.FIESA CH.FUSIO CH.HASLI CH.LAUCH CH.LIENZ CH.LLS 
   CH.METMA CH.MTI02 CH.MUGIO CH.MUO CH.NALPS CH.PANIX 
   CH.PLONS CH.ROMAN CH.ROTHE CH.SENIN CH.SLE CH.SULZ CH.TORNY 
   CH.VANNI CH.VDL CH.WILA CH.WIMIS CH.WOLEN GE.PSZ GR.UBR 
   HU.MPLH HU.SOP IV.BRMO IV.CTI IV.PTCC MN.BLY MN.DIVS MN.PDG 
   NI.ACOM NI.AGOR NI.CGRP NI.CIMO NI.CLUD NI.MPRI NI.SABO 
   NI.VARN NI.ZOU2 OE.ABTA OE.ARSA OE.CSNA OE.DAVA OE.FETA 
   OE.KBA OE.MOA OE.MYKA OE.OBKA OE.RETA OE.SOKA OE.WTTA 
   SI.LUSI SJ.BBLS SJ.FRGS SL.BOJS SL.CEY SL.CRES SL.CRNS 
   SL.DOBS SL.GBAS SL.GCIS SL.GORS SL.GROS SL.KOGS SL.LJU 
   SL.MOZS SL.PERS SL.SKDS SL.VISS SL.VNDS SL.VOJS 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.50e+22 dyne-cm
  Mw = 4.05 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1       80    70    65
   NP2      314    32   139
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.50e+22     58     316
    N   0.00e+00     23      89
    P  -1.50e+22     21     189

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.05e+22
       Mxy    -4.09e+21
       Mxz     9.85e+21
       Myy     1.77e+21
       Myz    -3.93e+21
       Mzz     8.72e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              --#############-------------           
             ####################----------          
           #########################---------        
          ############################--------       
         ############   ################-------      
        ############# T #################-------     
        #############   ##################------     
       ####################################-----#    
       #####################################-####    
       ###################################--#####    
       ###############################-------####    
        --#####################--------------###     
        -------------------------------------###     
         ------------------------------------##      
          -----------------------------------#       
           ---------------------------------#        
             -----------   ----------------          
              ---------- P ---------------           
                 -------   ------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.72e+21   9.85e+21   3.93e+21 
  9.85e+21  -1.05e+22   4.09e+21 
  3.93e+21   4.09e+21   1.77e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20150829184706/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   235    45   -75   3.69 0.2631
WVFGRD96    2.0    60    50   -65   3.77 0.2970
WVFGRD96    3.0    70    80    65   3.93 0.3077
WVFGRD96    4.0    70    80    65   3.95 0.3739
WVFGRD96    5.0    75    75    65   3.97 0.4235
WVFGRD96    6.0    75    75    65   3.97 0.4557
WVFGRD96    7.0    80    70    65   3.98 0.4764
WVFGRD96    8.0    75    75    65   4.04 0.4897
WVFGRD96    9.0    80    70    65   4.05 0.4982
WVFGRD96   10.0    80    70    65   4.05 0.4993
WVFGRD96   11.0    75    75    60   4.04 0.4956
WVFGRD96   12.0    75    75    55   4.04 0.4893
WVFGRD96   13.0    75    75    55   4.04 0.4823
WVFGRD96   14.0    70    80    50   4.03 0.4738
WVFGRD96   15.0    70    80    50   4.04 0.4653
WVFGRD96   16.0    65    85    45   4.04 0.4559
WVFGRD96   17.0    65    90    45   4.04 0.4475
WVFGRD96   18.0   245    90   -45   4.04 0.4393
WVFGRD96   19.0   245    85   -45   4.05 0.4311
WVFGRD96   20.0   245    85   -45   4.05 0.4227
WVFGRD96   21.0   245    85   -45   4.06 0.4141
WVFGRD96   22.0   245    85   -45   4.06 0.4057
WVFGRD96   23.0   245    85   -45   4.07 0.3973
WVFGRD96   24.0   245    90   -45   4.07 0.3889
WVFGRD96   25.0    65    90    45   4.08 0.3818
WVFGRD96   26.0    65    90    45   4.08 0.3745
WVFGRD96   27.0   245    90   -45   4.09 0.3673
WVFGRD96   28.0    65    90    40   4.09 0.3600
WVFGRD96   29.0    65    90    40   4.10 0.3528

The best solution is

WVFGRD96   10.0    80    70    65   4.05 0.4993

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Sat Aug 29 21:51:46 CDT 2015

Last Changed 2015/08/29