Location

2015/07/06 13:42:16 42.38 19.42 17 4.1 Montenegro

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports archive

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2015/07/06 13:42:16:0  42.38   19.42  17.0 4.1 Montenegro
 
 Stations used:
   HT.THE HU.AMBH HU.BUD MN.BLY MN.DIVS MN.PDG MN.TIR MN.VTS 
   RO.BANR RO.BZS RO.DEV RO.LOT RO.PUNG SJ.BBLS SJ.FRGS 
   SL.CRES SL.KOGS 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.88e+22 dyne-cm
  Mw = 4.24 
  Z  = 25 km
  Plane   Strike  Dip  Rake
   NP1      305    80    89
   NP2      130    10    95
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.88e+22     55     214
    N   0.00e+00      1     305
    P  -2.88e+22     35      36

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -6.20e+21
       Mxy    -4.76e+21
       Mxz    -2.23e+22
       Myy    -3.63e+21
       Myz    -1.55e+22
       Mzz     9.83e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ------------------------------          
           -----------------------   --------        
          ######------------------ P ---------       
         -#########---------------   ----------      
        -##############-------------------------     
        -#################----------------------     
       -####################---------------------    
       -#######################------------------    
       --#########################---------------    
       --###########################-------------    
        -#############   #############----------     
        --############ T ###############--------     
         --###########   #################-----      
          --################################--       
           --################################        
             --############################          
              ----#######################-           
                 ----#################-              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  9.83e+21  -2.23e+22   1.55e+22 
 -2.23e+22  -6.20e+21   4.76e+21 
  1.55e+22   4.76e+21  -3.63e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20150706134216/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 130
      DIP = 10
     RAKE = 95
       MW = 4.24
       HS = 25.0

The NDK file is 20150706134216.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2015/07/06 13:42:16:0  42.38   19.42  17.0 4.1 Montenegro
 
 Stations used:
   HT.THE HU.AMBH HU.BUD MN.BLY MN.DIVS MN.PDG MN.TIR MN.VTS 
   RO.BANR RO.BZS RO.DEV RO.LOT RO.PUNG SJ.BBLS SJ.FRGS 
   SL.CRES SL.KOGS 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.88e+22 dyne-cm
  Mw = 4.24 
  Z  = 25 km
  Plane   Strike  Dip  Rake
   NP1      305    80    89
   NP2      130    10    95
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.88e+22     55     214
    N   0.00e+00      1     305
    P  -2.88e+22     35      36

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -6.20e+21
       Mxy    -4.76e+21
       Mxz    -2.23e+22
       Myy    -3.63e+21
       Myz    -1.55e+22
       Mzz     9.83e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ------------------------------          
           -----------------------   --------        
          ######------------------ P ---------       
         -#########---------------   ----------      
        -##############-------------------------     
        -#################----------------------     
       -####################---------------------    
       -#######################------------------    
       --#########################---------------    
       --###########################-------------    
        -#############   #############----------     
        --############ T ###############--------     
         --###########   #################-----      
          --################################--       
           --################################        
             --############################          
              ----#######################-           
                 ----#################-              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  9.83e+21  -2.23e+22   1.55e+22 
 -2.23e+22  -6.20e+21   4.76e+21 
  1.55e+22   4.76e+21  -3.63e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20150706134216/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   110    45   -85   3.81 0.3032
WVFGRD96    2.0   110    40   -85   3.91 0.3621
WVFGRD96    3.0   100    40   -85   3.98 0.3528
WVFGRD96    4.0   295    60   -60   4.01 0.3033
WVFGRD96    5.0   305    80   -45   4.01 0.2784
WVFGRD96    6.0   100    90   -70   3.98 0.3091
WVFGRD96    7.0   285    85    70   3.99 0.3497
WVFGRD96    8.0   285    85    75   4.07 0.3773
WVFGRD96    9.0   295    80    80   4.09 0.4163
WVFGRD96   10.0   295    80    80   4.10 0.4502
WVFGRD96   11.0   295    80    80   4.10 0.4790
WVFGRD96   12.0   305    75    85   4.14 0.5056
WVFGRD96   13.0   305    75    85   4.14 0.5292
WVFGRD96   14.0   305    75    85   4.15 0.5484
WVFGRD96   15.0   305    75    85   4.16 0.5638
WVFGRD96   16.0   305    75    85   4.16 0.5765
WVFGRD96   17.0   305    75    85   4.17 0.5865
WVFGRD96   18.0   310    75    90   4.19 0.5944
WVFGRD96   19.0   310    75    90   4.20 0.6012
WVFGRD96   20.0   310    75    90   4.21 0.6061
WVFGRD96   21.0   305    80    85   4.21 0.6108
WVFGRD96   22.0   305    80    85   4.22 0.6141
WVFGRD96   23.0   125    10    90   4.22 0.6165
WVFGRD96   24.0   305    80    90   4.23 0.6178
WVFGRD96   25.0   130    10    95   4.24 0.6180
WVFGRD96   26.0   130    10    95   4.25 0.6171
WVFGRD96   27.0   135    10   100   4.26 0.6152
WVFGRD96   28.0   305    80    85   4.26 0.6123
WVFGRD96   29.0   145    10   110   4.27 0.6089

The best solution is

WVFGRD96   25.0   130    10    95   4.24 0.6180

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Mon Jul 6 14:04:00 CDT 2015

Last Changed 2015/07/06