2015/01/21 01:30:09 42.74 20.41 10.0 4.4 Serbia
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution
ENS 2015/01/21 01:30:09:9 42.74 20.41 10.0 4.4 Serbia
Stations used:
HL.KEK HT.GRG HT.KNT HT.SRS MN.DIVS MN.PDG MN.TIR MN.VTS
SJ.BBLS SJ.FRGS
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 1.10e+22 dyne-cm
Mw = 3.96
Z = 14 km
Plane Strike Dip Rake
NP1 95 85 -35
NP2 188 55 -174
Principal Axes:
Axis Value Plunge Azimuth
T 1.10e+22 20 147
N 0.00e+00 55 268
P -1.10e+22 28 46
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.64e+21
Mxy -8.72e+21
Mxz -6.10e+21
Myy -1.55e+21
Myz -1.32e+21
Mzz -1.09e+21
########------
##########------------
###########-----------------
###########-------------------
############-------------- -----
############--------------- P ------
############---------------- -------
############----------------------------
############----------------------------
#############-----------------------------
----########------------------------------
------------#####-------------------------
------------##############################
-----------#############################
-----------#############################
----------############################
----------##########################
---------################ ######
--------############### T ####
-------############### ###
------################
---###########
Global CMT Convention Moment Tensor:
R T P
-1.09e+21 -6.10e+21 1.32e+21
-6.10e+21 2.64e+21 8.72e+21
1.32e+21 8.72e+21 -1.55e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20150121013009/index.html
|
STK = 95
DIP = 85
RAKE = -35
MW = 3.96
HS = 14.0
The NDK file is 20150121013009.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution
ENS 2015/01/21 01:30:09:9 42.74 20.41 10.0 4.4 Serbia
Stations used:
HL.KEK HT.GRG HT.KNT HT.SRS MN.DIVS MN.PDG MN.TIR MN.VTS
SJ.BBLS SJ.FRGS
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 1.10e+22 dyne-cm
Mw = 3.96
Z = 14 km
Plane Strike Dip Rake
NP1 95 85 -35
NP2 188 55 -174
Principal Axes:
Axis Value Plunge Azimuth
T 1.10e+22 20 147
N 0.00e+00 55 268
P -1.10e+22 28 46
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.64e+21
Mxy -8.72e+21
Mxz -6.10e+21
Myy -1.55e+21
Myz -1.32e+21
Mzz -1.09e+21
########------
##########------------
###########-----------------
###########-------------------
############-------------- -----
############--------------- P ------
############---------------- -------
############----------------------------
############----------------------------
#############-----------------------------
----########------------------------------
------------#####-------------------------
------------##############################
-----------#############################
-----------#############################
----------############################
----------##########################
---------################ ######
--------############### T ####
-------############### ###
------################
---###########
Global CMT Convention Moment Tensor:
R T P
-1.09e+21 -6.10e+21 1.32e+21
-6.10e+21 2.64e+21 8.72e+21
1.32e+21 8.72e+21 -1.55e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20150121013009/index.html
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 280 85 5 3.53 0.2994
WVFGRD96 2.0 280 75 15 3.65 0.3698
WVFGRD96 3.0 285 75 25 3.72 0.3825
WVFGRD96 4.0 100 85 50 3.79 0.4122
WVFGRD96 5.0 100 90 50 3.81 0.4524
WVFGRD96 6.0 275 85 -45 3.82 0.4871
WVFGRD96 7.0 100 90 45 3.83 0.5111
WVFGRD96 8.0 95 80 -45 3.90 0.5317
WVFGRD96 9.0 90 75 -45 3.91 0.5581
WVFGRD96 10.0 90 75 -45 3.92 0.5778
WVFGRD96 11.0 95 80 -40 3.93 0.5903
WVFGRD96 12.0 95 80 -40 3.94 0.5982
WVFGRD96 13.0 95 80 -35 3.95 0.6020
WVFGRD96 14.0 95 85 -35 3.96 0.6037
WVFGRD96 15.0 95 85 -35 3.97 0.6033
WVFGRD96 16.0 280 90 35 3.98 0.5981
WVFGRD96 17.0 95 85 -35 3.99 0.5939
WVFGRD96 18.0 95 90 -35 3.99 0.5870
WVFGRD96 19.0 280 85 35 4.00 0.5792
WVFGRD96 20.0 95 90 -35 4.01 0.5697
WVFGRD96 21.0 95 90 -35 4.02 0.5601
WVFGRD96 22.0 275 85 35 4.02 0.5495
WVFGRD96 23.0 275 85 35 4.03 0.5388
WVFGRD96 24.0 275 85 35 4.04 0.5284
WVFGRD96 25.0 275 85 35 4.04 0.5181
WVFGRD96 26.0 275 85 35 4.05 0.5080
WVFGRD96 27.0 275 85 35 4.06 0.4986
WVFGRD96 28.0 275 85 35 4.06 0.4908
WVFGRD96 29.0 275 85 35 4.07 0.4843
The best solution is
WVFGRD96 14.0 95 85 -35 3.96 0.6037
The mechanism correspond to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
|
|
|
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Jan 21 15:27:49 CST 2015