2014/06/02 21:47:16 43.30 19.94 5 3.8 Serbia
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution
ENS 2014/06/02 21:47:16:2 43.30 19.94 5.0 3.8 Serbia
Stations used:
HL.KEK HT.HORT HT.KNT HT.PAIG HT.SRS HT.THE HT.XOR HU.BUD
HU.LTVH HU.MORH HU.PSZ HU.SOP HU.TRPA MN.DIVS MN.PDG MN.TIR
MN.VTS RO.BZS RO.MLR SJ.BBLS SJ.FRGS SL.VISS SL.VNDS
Filtering commands used:
cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 7.24e+21 dyne-cm
Mw = 3.84
Z = 13 km
Plane Strike Dip Rake
NP1 255 85 -15
NP2 346 75 -175
Principal Axes:
Axis Value Plunge Azimuth
T 7.24e+21 7 302
N 0.00e+00 74 57
P -7.24e+21 14 210
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.18e+21
Mxy -6.12e+21
Mxz 1.94e+21
Myy 3.51e+21
Myz 1.11e+20
Mzz -3.26e+20
###-----------
########--------------
############----------------
##############----------------
###############-----------------
T ################-----------------
# ################------------------
######################------------------
#######################------------#####
########################---###############
####################-----#################
#############------------#################
#######-------------------################
##-----------------------###############
-------------------------###############
------------------------##############
-----------------------#############
-----------------------###########
----- -------------#########
---- P -------------########
- ------------######
------------##
Global CMT Convention Moment Tensor:
R T P
-3.26e+20 1.94e+21 -1.11e+20
1.94e+21 -3.18e+21 6.12e+21
-1.11e+20 6.12e+21 3.51e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140602214716/index.html
|
STK = 255
DIP = 85
RAKE = -15
MW = 3.84
HS = 13.0
The NDK file is 20140602214716.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution
ENS 2014/06/02 21:47:16:2 43.30 19.94 5.0 3.8 Serbia
Stations used:
HL.KEK HT.HORT HT.KNT HT.PAIG HT.SRS HT.THE HT.XOR HU.BUD
HU.LTVH HU.MORH HU.PSZ HU.SOP HU.TRPA MN.DIVS MN.PDG MN.TIR
MN.VTS RO.BZS RO.MLR SJ.BBLS SJ.FRGS SL.VISS SL.VNDS
Filtering commands used:
cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 7.24e+21 dyne-cm
Mw = 3.84
Z = 13 km
Plane Strike Dip Rake
NP1 255 85 -15
NP2 346 75 -175
Principal Axes:
Axis Value Plunge Azimuth
T 7.24e+21 7 302
N 0.00e+00 74 57
P -7.24e+21 14 210
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.18e+21
Mxy -6.12e+21
Mxz 1.94e+21
Myy 3.51e+21
Myz 1.11e+20
Mzz -3.26e+20
###-----------
########--------------
############----------------
##############----------------
###############-----------------
T ################-----------------
# ################------------------
######################------------------
#######################------------#####
########################---###############
####################-----#################
#############------------#################
#######-------------------################
##-----------------------###############
-------------------------###############
------------------------##############
-----------------------#############
-----------------------###########
----- -------------#########
---- P -------------########
- ------------######
------------##
Global CMT Convention Moment Tensor:
R T P
-3.26e+20 1.94e+21 -1.11e+20
1.94e+21 -3.18e+21 6.12e+21
-1.11e+20 6.12e+21 3.51e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140602214716/index.html
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 255 90 -5 3.46 0.3697
WVFGRD96 2.0 255 90 0 3.57 0.4851
WVFGRD96 3.0 255 90 -5 3.63 0.5389
WVFGRD96 4.0 75 85 10 3.67 0.5712
WVFGRD96 5.0 255 90 -10 3.70 0.5892
WVFGRD96 6.0 75 90 10 3.72 0.6039
WVFGRD96 7.0 75 90 10 3.75 0.6173
WVFGRD96 8.0 255 85 -15 3.77 0.6343
WVFGRD96 9.0 255 85 -15 3.79 0.6406
WVFGRD96 10.0 255 85 -15 3.80 0.6440
WVFGRD96 11.0 255 80 -15 3.82 0.6453
WVFGRD96 12.0 255 80 -15 3.83 0.6468
WVFGRD96 13.0 255 85 -15 3.84 0.6478
WVFGRD96 14.0 255 85 -15 3.84 0.6473
WVFGRD96 15.0 255 85 -15 3.85 0.6452
WVFGRD96 16.0 255 85 -15 3.86 0.6420
WVFGRD96 17.0 255 85 -15 3.87 0.6379
WVFGRD96 18.0 255 85 -15 3.87 0.6327
WVFGRD96 19.0 75 65 5 3.90 0.6255
WVFGRD96 20.0 75 65 5 3.90 0.6214
WVFGRD96 21.0 75 65 5 3.91 0.6172
WVFGRD96 22.0 75 65 5 3.92 0.6121
WVFGRD96 23.0 75 65 5 3.92 0.6069
WVFGRD96 24.0 75 65 5 3.93 0.6014
WVFGRD96 25.0 75 65 5 3.93 0.5955
WVFGRD96 26.0 75 65 5 3.94 0.5893
WVFGRD96 27.0 75 65 5 3.95 0.5827
WVFGRD96 28.0 75 65 5 3.95 0.5759
WVFGRD96 29.0 75 65 5 3.96 0.5683
The best solution is
WVFGRD96 13.0 255 85 -15 3.84 0.6478
The mechanism correspond to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
|
|
|
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Mon Jun 2 18:15:01 CDT 2014