Location

2014/05/24 14:35:34 50.20 12.41 10 3.7 Germany

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports archive

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/05/24 14:35:34:0  50.20   12.41  10.0 3.7 Germany
 
 Stations used:
   CZ.PRU CZ.PVCC GE.RUE GR.BRG GR.CLL GR.CLZ GR.GRA2 GR.GRA3 
   GR.GRB1 GR.GRC1 GR.GRC2 GR.GTTG GR.MOX GR.UBBA GR.WET 
   SX.WERN SX.WIMM TH.ABG1 TH.BBWF TH.GRZ1 TH.HKWD TH.HWTS 
   TH.LEIB1 TH.MODW TH.PLN TH.POSS TH.ZEU 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 7.16e+20 dyne-cm
  Mw = 3.17 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1       30    60    45
   NP2      273    52   141
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.16e+20     52     246
    N   0.00e+00     38      57
    P  -7.16e+20      5     150

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.89e+20
       Mxy     4.09e+20
       Mxz    -9.27e+19
       Myy     5.09e+19
       Myz    -3.46e+20
       Mzz     4.39e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              -------------------------###           
             --------------------------####          
           ----------------------------######        
          -----------------------------#######       
         ---------#################----########      
        -----##########################-########     
        ---###########################-----#####     
       --#############################--------###    
       ##############################----------##    
       #############################-------------    
       ###########   ##############--------------    
        ########## T #############--------------     
        ##########   ############---------------     
         #######################---------------      
          ####################----------------       
           #################-----------------        
             #############-----------------          
              #########-------------   ---           
                 ##----------------- P               
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.39e+20  -9.27e+19   3.46e+20 
 -9.27e+19  -4.89e+20  -4.09e+20 
  3.46e+20  -4.09e+20   5.09e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140524143534/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 30
      DIP = 60
     RAKE = 45
       MW = 3.17
       HS = 12.0

The NDK file is 20140524143534.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/05/24 14:35:34:0  50.20   12.41  10.0 3.7 Germany
 
 Stations used:
   CZ.PRU CZ.PVCC GE.RUE GR.BRG GR.CLL GR.CLZ GR.GRA2 GR.GRA3 
   GR.GRB1 GR.GRC1 GR.GRC2 GR.GTTG GR.MOX GR.UBBA GR.WET 
   SX.WERN SX.WIMM TH.ABG1 TH.BBWF TH.GRZ1 TH.HKWD TH.HWTS 
   TH.LEIB1 TH.MODW TH.PLN TH.POSS TH.ZEU 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 7.16e+20 dyne-cm
  Mw = 3.17 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1       30    60    45
   NP2      273    52   141
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.16e+20     52     246
    N   0.00e+00     38      57
    P  -7.16e+20      5     150

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.89e+20
       Mxy     4.09e+20
       Mxz    -9.27e+19
       Myy     5.09e+19
       Myz    -3.46e+20
       Mzz     4.39e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              -------------------------###           
             --------------------------####          
           ----------------------------######        
          -----------------------------#######       
         ---------#################----########      
        -----##########################-########     
        ---###########################-----#####     
       --#############################--------###    
       ##############################----------##    
       #############################-------------    
       ###########   ##############--------------    
        ########## T #############--------------     
        ##########   ############---------------     
         #######################---------------      
          ####################----------------       
           #################-----------------        
             #############-----------------          
              #########-------------   ---           
                 ##----------------- P               
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.39e+20  -9.27e+19   3.46e+20 
 -9.27e+19  -4.89e+20  -4.09e+20 
  3.46e+20  -4.09e+20   5.09e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140524143534/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0     0    65   -15   2.77 0.2177
WVFGRD96    2.0     0    50   -15   2.91 0.2545
WVFGRD96    3.0     5    50   -15   2.94 0.2640
WVFGRD96    4.0    10    40    -5   2.99 0.2732
WVFGRD96    5.0    15    40     0   3.00 0.2904
WVFGRD96    6.0   155    70   -85   3.07 0.3146
WVFGRD96    7.0    25    60    50   3.05 0.3347
WVFGRD96    8.0   345    25   -75   3.15 0.3487
WVFGRD96    9.0    30    60    55   3.14 0.3983
WVFGRD96   10.0    30    60    50   3.15 0.4297
WVFGRD96   11.0    30    60    50   3.16 0.4449
WVFGRD96   12.0    30    60    45   3.17 0.4503
WVFGRD96   13.0    25    65    40   3.17 0.4494
WVFGRD96   14.0    25    65    40   3.18 0.4462
WVFGRD96   15.0    25    65    40   3.18 0.4386
WVFGRD96   16.0    25    65    35   3.19 0.4302
WVFGRD96   17.0    25    65    35   3.19 0.4217
WVFGRD96   18.0    25    65    35   3.19 0.4120
WVFGRD96   19.0    25    65    35   3.19 0.4012
WVFGRD96   20.0    25    70    35   3.20 0.3902
WVFGRD96   21.0    25    70    35   3.21 0.3800
WVFGRD96   22.0    25    70    35   3.21 0.3688
WVFGRD96   23.0    25    70    35   3.21 0.3574
WVFGRD96   24.0    25    70    35   3.21 0.3459
WVFGRD96   25.0    25    70    35   3.21 0.3345
WVFGRD96   26.0    25    70    35   3.21 0.3234
WVFGRD96   27.0    25    70    35   3.22 0.3127
WVFGRD96   28.0    20    75    30   3.22 0.3023
WVFGRD96   29.0    20    75    30   3.22 0.2931

The best solution is

WVFGRD96   12.0    30    60    45   3.17 0.4503

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Sat May 24 21:19:28 CDT 2014

Last Changed 2014/05/24