Location

2014/01/23 06:15:05 45.42 26.26 127.0 4.7 Romania

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports archive

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/01/23 06:15:05:0  45.42   26.26 127.0 4.7 Romania
 
 Stations used:
   GE.TIRR RO.ARR RO.CFR RO.ISR RO.MLR RO.PLOR1 RO.TESR 
   RO.VOIR RO.VRI 
 
 Filtering commands used:
   cut a -30 a 60
   rtr
   taper w 0.1
   hp c 0.05 n 3 
   lp c 0.25 n 3 
 
 Best Fitting Double Couple
  Mo = 4.52e+22 dyne-cm
  Mw = 4.37 
  Z  = 118 km
  Plane   Strike  Dip  Rake
   NP1      277    56   113
   NP2       60    40    60
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.52e+22     69     238
    N   0.00e+00     19      84
    P  -4.52e+22      9     351

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.15e+22
       Mxy     9.43e+21
       Mxz    -1.45e+22
       Myy     2.94e+21
       Myz    -1.16e+22
       Mzz     3.85e+22
                                                     
                                                     
                                                     
                                                     
                     --- P --------                  
                 -------   ------------              
              ----------------------------           
             ------------------------------          
           ----------------------------------        
          ------------------------------------       
         ----------###########----------------#      
        -----########################---------##     
        --###############################-----##     
       -####################################-####    
       ######################################-###    
       ###############   ###################----#    
       ############### T ##################------    
        ##############   ################-------     
        ################################--------     
         #############################---------      
          #########################-----------       
           --###################-------------        
             -----#######------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.85e+22  -1.45e+22   1.16e+22 
 -1.45e+22  -4.15e+22  -9.43e+21 
  1.16e+22  -9.43e+21   2.94e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140123061505/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 60
      DIP = 40
     RAKE = 60
       MW = 4.37
       HS = 118.0

The NDK file is 20140123061505.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/01/23 06:15:05:0  45.42   26.26 127.0 4.7 Romania
 
 Stations used:
   GE.TIRR RO.ARR RO.CFR RO.ISR RO.MLR RO.PLOR1 RO.TESR 
   RO.VOIR RO.VRI 
 
 Filtering commands used:
   cut a -30 a 60
   rtr
   taper w 0.1
   hp c 0.05 n 3 
   lp c 0.25 n 3 
 
 Best Fitting Double Couple
  Mo = 4.52e+22 dyne-cm
  Mw = 4.37 
  Z  = 118 km
  Plane   Strike  Dip  Rake
   NP1      277    56   113
   NP2       60    40    60
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.52e+22     69     238
    N   0.00e+00     19      84
    P  -4.52e+22      9     351

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.15e+22
       Mxy     9.43e+21
       Mxz    -1.45e+22
       Myy     2.94e+21
       Myz    -1.16e+22
       Mzz     3.85e+22
                                                     
                                                     
                                                     
                                                     
                     --- P --------                  
                 -------   ------------              
              ----------------------------           
             ------------------------------          
           ----------------------------------        
          ------------------------------------       
         ----------###########----------------#      
        -----########################---------##     
        --###############################-----##     
       -####################################-####    
       ######################################-###    
       ###############   ###################----#    
       ############### T ##################------    
        ##############   ################-------     
        ################################--------     
         #############################---------      
          #########################-----------       
           --###################-------------        
             -----#######------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.85e+22  -1.45e+22   1.16e+22 
 -1.45e+22  -4.15e+22  -9.43e+21 
  1.16e+22  -9.43e+21   2.94e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20140123061505/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 60
rtr
taper w 0.1
hp c 0.05 n 3 
lp c 0.25 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   230    80    35   3.22 0.1016
WVFGRD96    4.0    80    60    80   3.41 0.1403
WVFGRD96    6.0    80    60    85   3.50 0.1571
WVFGRD96    8.0   300    40   -35   3.65 0.1475
WVFGRD96   10.0    75    30   -95   3.74 0.1563
WVFGRD96   12.0   270    45   -75   3.82 0.2010
WVFGRD96   14.0   270    45   -70   3.86 0.2241
WVFGRD96   16.0   270    50   -65   3.88 0.2260
WVFGRD96   18.0   270    50   -65   3.89 0.2245
WVFGRD96   20.0   270    55   -65   3.91 0.2319
WVFGRD96   22.0   270    50   -65   3.91 0.2310
WVFGRD96   24.0    50    25    45   3.94 0.2188
WVFGRD96   26.0    55    25    50   3.95 0.2330
WVFGRD96   28.0    55    50    50   3.96 0.2660
WVFGRD96   30.0    55    45    55   3.96 0.2858
WVFGRD96   32.0    55    50    50   3.96 0.2800
WVFGRD96   34.0    60    45    60   3.97 0.2706
WVFGRD96   36.0    65    45    65   3.99 0.2883
WVFGRD96   38.0    75    30    75   3.99 0.2941
WVFGRD96   40.0    75    30    75   4.10 0.3068
WVFGRD96   42.0    75    30    75   4.13 0.3006
WVFGRD96   44.0    70    30    75   4.15 0.2992
WVFGRD96   46.0    65    30    70   4.17 0.3055
WVFGRD96   48.0    60    30    65   4.18 0.3165
WVFGRD96   50.0    55    55    55   4.16 0.3261
WVFGRD96   52.0    55    55    55   4.17 0.3318
WVFGRD96   54.0    55    55    55   4.18 0.3358
WVFGRD96   56.0    55    55    55   4.19 0.3383
WVFGRD96   58.0    55    55    55   4.20 0.3466
WVFGRD96   60.0    55    40    55   4.21 0.3524
WVFGRD96   62.0    55    40    55   4.21 0.3576
WVFGRD96   64.0    55    40    55   4.22 0.3576
WVFGRD96   66.0    55    40    55   4.23 0.3655
WVFGRD96   68.0    55    40    55   4.23 0.3646
WVFGRD96   70.0    55    40    55   4.24 0.3674
WVFGRD96   72.0    55    40    55   4.25 0.3673
WVFGRD96   74.0    55    45    55   4.26 0.3670
WVFGRD96   76.0    55    40    60   4.26 0.3689
WVFGRD96   78.0    50    40    55   4.26 0.3572
WVFGRD96   80.0    55    45    55   4.27 0.3600
WVFGRD96   82.0    35    40    40   4.27 0.3598
WVFGRD96   84.0    35    40    40   4.28 0.3653
WVFGRD96   86.0    35    40    40   4.28 0.3640
WVFGRD96   88.0    35    40    40   4.29 0.3710
WVFGRD96   90.0    35    45    40   4.28 0.3676
WVFGRD96   92.0    35    45    40   4.29 0.3708
WVFGRD96   94.0    35    45    40   4.29 0.3673
WVFGRD96   96.0    50    35    50   4.30 0.3698
WVFGRD96   98.0    50    35    50   4.30 0.3721
WVFGRD96  100.0    50    35    50   4.31 0.3738
WVFGRD96  102.0    55    40    50   4.33 0.3777
WVFGRD96  104.0    55    40    50   4.33 0.3784
WVFGRD96  106.0    55    40    50   4.34 0.3852
WVFGRD96  108.0    60    40    55   4.35 0.3903
WVFGRD96  110.0    60    40    55   4.35 0.3935
WVFGRD96  112.0    60    40    55   4.36 0.3974
WVFGRD96  114.0    60    40    55   4.36 0.3985
WVFGRD96  116.0    60    40    55   4.37 0.4035
WVFGRD96  118.0    60    40    60   4.37 0.4042
WVFGRD96  120.0    60    40    60   4.38 0.4020
WVFGRD96  122.0    60    40    60   4.38 0.4035
WVFGRD96  124.0    60    40    60   4.38 0.4006
WVFGRD96  126.0    55    40    55   4.37 0.3976
WVFGRD96  128.0    55    40    55   4.38 0.3962
WVFGRD96  130.0    55    40    55   4.38 0.3943
WVFGRD96  132.0    55    40    55   4.38 0.3939
WVFGRD96  134.0    50    40    50   4.38 0.3910
WVFGRD96  136.0    50    40    50   4.38 0.3866
WVFGRD96  138.0    45    40    50   4.37 0.3853

The best solution is

WVFGRD96  118.0    60    40    60   4.37 0.4042

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 60
rtr
taper w 0.1
hp c 0.05 n 3 
lp c 0.25 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Thu Jan 23 09:19:34 CST 2014

Last Changed 2014/01/23