Location

2013/07/30 12:58:33 45.14 15.08 20.0 4.6 Croatia

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports archive

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/07/30 12:58:33:0  45.14   15.08  20.0 4.6 Croatia
 
 Stations used:
   BA.PZUN CH.VDL CZ.JAVC CZ.KHC CZ.KRUC CZ.TREC CZ.VRAC 
   GE.MORC GE.PSZ GR.FUR GR.GEC2 GR.GRB5 GR.UBR GR.WET HU.BEHE 
   HU.BUD HU.SOP IV.AOI IV.ASQU IV.BDI IV.BOB IV.BRMO IV.BSSO 
   IV.CAFI IV.CESI IV.CING IV.CRMI IV.FAGN IV.FDMO IV.FIAM 
   IV.FRES IV.FVI IV.MABI IV.MELA IV.MURB IV.NRCA IV.PARC 
   IV.PESA IV.PTQR IV.ROVR IV.SACS IV.SGRT IV.SNTG IV.T0104 
   IV.TEOL IV.TERO MN.BLY MN.TUE MN.VLC OE.ABTA OE.ARSA 
   OE.CONA OE.CSNA OE.DAVA OE.FETA OE.MOA OE.MYKA OE.OBKA 
   OE.RETA OE.SOKA OE.WTTA SJ.BBLS SJ.FRGS SL.CADS SL.CEY 
   SL.CRES SL.CRNS SL.GBAS SL.GBRS SL.GCIS SL.GORS SL.JAVS 
   SL.KNDS SL.KOGS SL.LJU SL.MOZS SL.PERS SL.ROBS SL.SKDS 
   SL.VISS SL.VNDS SL.VOJS 
 
 Filtering commands used:
   cut a -20 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 3.09e+22 dyne-cm
  Mw = 4.26 
  Z  = 17 km
  Plane   Strike  Dip  Rake
   NP1      215    75    30
   NP2      116    61   163
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.09e+22     32      79
    N   0.00e+00     57     239
    P  -3.09e+22      9     343

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.68e+22
       Mxy     1.25e+22
       Mxz    -2.00e+21
       Myy     1.91e+22
       Myz     1.49e+22
       Mzz     7.73e+21
                                                     
                                                     
                                                     
                                                     
                        -----------                  
                 ---- P ---------------              
              -------   --------------####           
             ----------------------########          
           ----------------------############        
          ---------------------###############       
         #--------------------#################      
        ##------------------####################     
        ####---------------##############   ####     
       ######------------################ T #####    
       #######----------#################   #####    
       #########-------##########################    
       ############---###########################    
        ########################################     
        ############-----#######################     
         ##########----------##################      
          ########------------------#######---       
           ######----------------------------        
             ####--------------------------          
              ##--------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  7.73e+21  -2.00e+21  -1.49e+22 
 -2.00e+21  -2.68e+22  -1.25e+22 
 -1.49e+22  -1.25e+22   1.91e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20130730125833/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 215
      DIP = 75
     RAKE = 30
       MW = 4.26
       HS = 17.0

The NDK file is 20130730125833.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2013/07/30 12:58:33:0  45.14   15.08  20.0 4.6 Croatia
 
 Stations used:
   BA.PZUN CH.VDL CZ.JAVC CZ.KHC CZ.KRUC CZ.TREC CZ.VRAC 
   GE.MORC GE.PSZ GR.FUR GR.GEC2 GR.GRB5 GR.UBR GR.WET HU.BEHE 
   HU.BUD HU.SOP IV.AOI IV.ASQU IV.BDI IV.BOB IV.BRMO IV.BSSO 
   IV.CAFI IV.CESI IV.CING IV.CRMI IV.FAGN IV.FDMO IV.FIAM 
   IV.FRES IV.FVI IV.MABI IV.MELA IV.MURB IV.NRCA IV.PARC 
   IV.PESA IV.PTQR IV.ROVR IV.SACS IV.SGRT IV.SNTG IV.T0104 
   IV.TEOL IV.TERO MN.BLY MN.TUE MN.VLC OE.ABTA OE.ARSA 
   OE.CONA OE.CSNA OE.DAVA OE.FETA OE.MOA OE.MYKA OE.OBKA 
   OE.RETA OE.SOKA OE.WTTA SJ.BBLS SJ.FRGS SL.CADS SL.CEY 
   SL.CRES SL.CRNS SL.GBAS SL.GBRS SL.GCIS SL.GORS SL.JAVS 
   SL.KNDS SL.KOGS SL.LJU SL.MOZS SL.PERS SL.ROBS SL.SKDS 
   SL.VISS SL.VNDS SL.VOJS 
 
 Filtering commands used:
   cut a -20 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 3.09e+22 dyne-cm
  Mw = 4.26 
  Z  = 17 km
  Plane   Strike  Dip  Rake
   NP1      215    75    30
   NP2      116    61   163
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.09e+22     32      79
    N   0.00e+00     57     239
    P  -3.09e+22      9     343

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.68e+22
       Mxy     1.25e+22
       Mxz    -2.00e+21
       Myy     1.91e+22
       Myz     1.49e+22
       Mzz     7.73e+21
                                                     
                                                     
                                                     
                                                     
                        -----------                  
                 ---- P ---------------              
              -------   --------------####           
             ----------------------########          
           ----------------------############        
          ---------------------###############       
         #--------------------#################      
        ##------------------####################     
        ####---------------##############   ####     
       ######------------################ T #####    
       #######----------#################   #####    
       #########-------##########################    
       ############---###########################    
        ########################################     
        ############-----#######################     
         ##########----------##################      
          ########------------------#######---       
           ######----------------------------        
             ####--------------------------          
              ##--------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  7.73e+21  -2.00e+21  -1.49e+22 
 -2.00e+21  -2.68e+22  -1.25e+22 
 -1.49e+22  -1.25e+22   1.91e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20130730125833/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -20 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    -5    45   -90   3.91 0.3093
WVFGRD96    1.0    25    85     5   3.81 0.3077
WVFGRD96    2.0    30    70    20   3.92 0.3939
WVFGRD96    3.0    30    70    20   3.98 0.4262
WVFGRD96    4.0   200    65   -50   4.08 0.4478
WVFGRD96    5.0   200    65   -50   4.10 0.4875
WVFGRD96    6.0    20    70   -35   4.09 0.5192
WVFGRD96    7.0    25    75   -35   4.10 0.5513
WVFGRD96    8.0    20    70   -40   4.16 0.5802
WVFGRD96    9.0    25    75   -40   4.16 0.6053
WVFGRD96   10.0    25    75   -35   4.18 0.6283
WVFGRD96   11.0   220    70    40   4.20 0.6518
WVFGRD96   12.0   220    70    40   4.21 0.6800
WVFGRD96   13.0   215    75    35   4.22 0.7011
WVFGRD96   14.0   215    75    35   4.23 0.7160
WVFGRD96   15.0   215    75    35   4.24 0.7256
WVFGRD96   16.0   215    75    35   4.25 0.7310
WVFGRD96   17.0   215    75    30   4.26 0.7337
WVFGRD96   18.0   215    75    30   4.26 0.7334
WVFGRD96   19.0   215    75    30   4.27 0.7302
WVFGRD96   20.0   215    75    30   4.28 0.7250
WVFGRD96   21.0   210    80    30   4.29 0.7194
WVFGRD96   22.0   210    80    30   4.30 0.7122
WVFGRD96   23.0   210    80    30   4.30 0.7038
WVFGRD96   24.0   210    80    30   4.31 0.6944
WVFGRD96   25.0   210    80    25   4.32 0.6843
WVFGRD96   26.0   210    80    25   4.32 0.6736
WVFGRD96   27.0   210    80    25   4.33 0.6621
WVFGRD96   28.0   210    80    25   4.33 0.6500
WVFGRD96   29.0   210    80    25   4.34 0.6372

The best solution is

WVFGRD96   17.0   215    75    30   4.26 0.7337

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -20 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Tue Jul 30 10:18:31 CDT 2013

Last Changed 2013/07/30