Location

2013/05/29 03:16:29 52.891 -4.680 8.0 3.80 Wales

The location used is that given by BGS Other locations are given:

BGS  2013/05/29 03:16:29.2 52.891 -4.680 8     3.8
EMSC 2013/05/29 03:16:26   52.90  -4.90  8.0   4.2 ML
NEIC 2013/05/29 03:16:23   52.955 -5.220 9.95  3.9 mb

Felt Map

USGS Felt map for this earthquake

USGS Felt reports archive

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/05/29 03:16:29:2  52.89   -4.68   8.0 3.8 Wales
 
 Stations used:
   BN.LLW EI.IDGL EI.IGLA GB.CCA1 GB.CLGH GB.CWF GB.DYA GB.EDI 
   GB.ESK GB.FOEL GB.HTL GB.JSA GB.MCH1 GB.SWN1 GE.VAL 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 2.02e+21 dyne-cm
  Mw = 3.47 
  Z  = 11 km
  Plane   Strike  Dip  Rake
   NP1       68    86   -140
   NP2      335    50    -5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.02e+21     24     195
    N   0.00e+00     50      73
    P  -2.02e+21     30     300

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.21e+21
       Mxy     1.06e+21
       Mxz    -1.16e+21
       Myy    -1.04e+21
       Myz     5.74e+20
       Mzz    -1.73e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 -------###############              
              --------------##############           
             -----------------#############          
           ---------------------#############        
          -----------------------#############       
         -----   ------------------############      
        ------ P -------------------#########---     
        ------   --------------------####-------     
       ------------------------------#-----------    
       --------------------------#####-----------    
       ---------------------###########----------    
       -----------------###############----------    
        -----------#####################--------     
        -----###########################--------     
         ###############################-------      
          ##############################------       
           #############################-----        
             ##########   #############----          
              ######### T ############----           
                 ######   ############-              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.73e+20  -1.16e+21  -5.74e+20 
 -1.16e+21   1.21e+21  -1.06e+21 
 -5.74e+20  -1.06e+21  -1.04e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20130529031629/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 335
      DIP = 50
     RAKE = -5
       MW = 3.47
       HS = 11.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2013/05/29 03:16:29:2  52.89   -4.68   8.0 3.8 Wales
 
 Stations used:
   BN.LLW EI.IDGL EI.IGLA GB.CCA1 GB.CLGH GB.CWF GB.DYA GB.EDI 
   GB.ESK GB.FOEL GB.HTL GB.JSA GB.MCH1 GB.SWN1 GE.VAL 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 2.02e+21 dyne-cm
  Mw = 3.47 
  Z  = 11 km
  Plane   Strike  Dip  Rake
   NP1       68    86   -140
   NP2      335    50    -5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.02e+21     24     195
    N   0.00e+00     50      73
    P  -2.02e+21     30     300

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.21e+21
       Mxy     1.06e+21
       Mxz    -1.16e+21
       Myy    -1.04e+21
       Myz     5.74e+20
       Mzz    -1.73e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 -------###############              
              --------------##############           
             -----------------#############          
           ---------------------#############        
          -----------------------#############       
         -----   ------------------############      
        ------ P -------------------#########---     
        ------   --------------------####-------     
       ------------------------------#-----------    
       --------------------------#####-----------    
       ---------------------###########----------    
       -----------------###############----------    
        -----------#####################--------     
        -----###########################--------     
         ###############################-------      
          ##############################------       
           #############################-----        
             ##########   #############----          
              ######### T ############----           
                 ######   ############-              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.73e+20  -1.16e+21  -5.74e+20 
 -1.16e+21   1.21e+21  -1.06e+21 
 -5.74e+20  -1.06e+21  -1.04e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20130529031629/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   105    45   -85   3.22 0.1786
WVFGRD96    1.0   330    90     5   3.07 0.1989
WVFGRD96    2.0   150    75   -15   3.24 0.2939
WVFGRD96    3.0   150    75   -10   3.29 0.3205
WVFGRD96    4.0   150    60   -15   3.34 0.3401
WVFGRD96    5.0   150    45   -15   3.39 0.3657
WVFGRD96    6.0   330    40   -20   3.41 0.3874
WVFGRD96    7.0   335    45   -10   3.40 0.3986
WVFGRD96    8.0   330    40   -20   3.47 0.4095
WVFGRD96    9.0   335    45   -10   3.45 0.4128
WVFGRD96   10.0   335    45   -10   3.46 0.4138
WVFGRD96   11.0   335    50    -5   3.47 0.4145
WVFGRD96   12.0   340    50     5   3.47 0.4124
WVFGRD96   13.0   340    50     0   3.47 0.4126
WVFGRD96   14.0   340    50     0   3.48 0.4112
WVFGRD96   15.0   340    50     0   3.49 0.4059
WVFGRD96   16.0   340    55     0   3.49 0.4032
WVFGRD96   17.0   340    55     0   3.50 0.3972
WVFGRD96   18.0   340    55     0   3.51 0.3930
WVFGRD96   19.0   340    55     0   3.51 0.3885
WVFGRD96   20.0   335    55   -15   3.52 0.3827
WVFGRD96   21.0   335    55   -15   3.53 0.3778
WVFGRD96   22.0   335    55   -15   3.54 0.3717
WVFGRD96   23.0   335    55   -15   3.54 0.3650
WVFGRD96   24.0   160    60    10   3.56 0.3564
WVFGRD96   25.0   160    60    10   3.56 0.3504
WVFGRD96   26.0   165    60    15   3.55 0.3439
WVFGRD96   27.0   165    60    15   3.56 0.3380
WVFGRD96   28.0   165    60    15   3.57 0.3321
WVFGRD96   29.0   165    60    15   3.57 0.3258

The best solution is

WVFGRD96   11.0   335    50    -5   3.47 0.4145

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Wed May 29 04:49:39 CDT 2013

Last Changed 2013/05/29