Location

2013/05/15 15:02:42 41.41 19.44 10.0 3.80 Albania

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports archive

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/05/15 15:02:42:0  41.41   19.44  10.0 3.8 Albania
 
 Stations used:
   HT.AGG HT.FNA HT.GRG HT.HORT HT.KNT HT.SOH HT.SRS HT.THE 
   MN.BLY MN.PDG MN.TIR MN.VTS RO.BZS SJ.BBLS SJ.FRGS 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 8.04e+21 dyne-cm
  Mw = 3.87 
  Z  = 25 km
  Plane   Strike  Dip  Rake
   NP1        8    62   139
   NP2      120    55    35
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.04e+21     48     331
    N   0.00e+00     42     159
    P  -8.04e+21      4      66

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.42e+21
       Mxy    -4.57e+21
       Mxz     3.25e+21
       Myy    -5.75e+21
       Myz    -2.48e+21
       Mzz     4.33e+21
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 ################------              
              ####################--------           
             #####################---------          
           ##########   ###########----------        
          ########### T ###########----------        
         -###########   ###########---------- P      
        ---########################----------        
        ----#######################-------------     
       ------######################--------------    
       -------#####################--------------    
       --------####################--------------    
       ----------##################--------------    
        -----------###############--------------     
        --------------############--------------     
         ----------------########--------------      
          -------------------####-------------       
           ---------------------#############        
             ------------------############          
              ----------------############           
                 -----------###########              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.33e+21   3.25e+21   2.48e+21 
  3.25e+21   1.42e+21   4.57e+21 
  2.48e+21   4.57e+21  -5.75e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20130515150242/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 120
      DIP = 55
     RAKE = 35
       MW = 3.87
       HS = 25.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2013/05/15 15:02:42:0  41.41   19.44  10.0 3.8 Albania
 
 Stations used:
   HT.AGG HT.FNA HT.GRG HT.HORT HT.KNT HT.SOH HT.SRS HT.THE 
   MN.BLY MN.PDG MN.TIR MN.VTS RO.BZS SJ.BBLS SJ.FRGS 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 8.04e+21 dyne-cm
  Mw = 3.87 
  Z  = 25 km
  Plane   Strike  Dip  Rake
   NP1        8    62   139
   NP2      120    55    35
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.04e+21     48     331
    N   0.00e+00     42     159
    P  -8.04e+21      4      66

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.42e+21
       Mxy    -4.57e+21
       Mxz     3.25e+21
       Myy    -5.75e+21
       Myz    -2.48e+21
       Mzz     4.33e+21
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 ################------              
              ####################--------           
             #####################---------          
           ##########   ###########----------        
          ########### T ###########----------        
         -###########   ###########---------- P      
        ---########################----------        
        ----#######################-------------     
       ------######################--------------    
       -------#####################--------------    
       --------####################--------------    
       ----------##################--------------    
        -----------###############--------------     
        --------------############--------------     
         ----------------########--------------      
          -------------------####-------------       
           ---------------------#############        
             ------------------############          
              ----------------############           
                 -----------###########              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.33e+21   3.25e+21   2.48e+21 
  3.25e+21   1.42e+21   4.57e+21 
  2.48e+21   4.57e+21  -5.75e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20130515150242/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    45    40   -95   3.37 0.2580
WVFGRD96    1.0   130    90     5   3.41 0.2769
WVFGRD96    2.0   130    85    10   3.52 0.3682
WVFGRD96    3.0   310    90    -5   3.58 0.4243
WVFGRD96    4.0   130    85     5   3.62 0.4490
WVFGRD96    5.0   130    85     0   3.65 0.4529
WVFGRD96    6.0   125    85     0   3.66 0.4522
WVFGRD96    7.0   125    80     5   3.68 0.4566
WVFGRD96    8.0   125    75     5   3.71 0.4595
WVFGRD96    9.0   110    45     5   3.70 0.4735
WVFGRD96   10.0   110    45    10   3.71 0.4957
WVFGRD96   11.0   115    45    20   3.73 0.5171
WVFGRD96   12.0   115    45    25   3.74 0.5361
WVFGRD96   13.0   115    50    25   3.75 0.5540
WVFGRD96   14.0   115    50    25   3.76 0.5696
WVFGRD96   15.0   115    50    25   3.77 0.5817
WVFGRD96   16.0   120    50    35   3.80 0.5920
WVFGRD96   17.0   120    50    35   3.80 0.6021
WVFGRD96   18.0   120    50    35   3.81 0.6107
WVFGRD96   19.0   120    50    35   3.82 0.6163
WVFGRD96   20.0   120    55    35   3.84 0.6212
WVFGRD96   21.0   120    55    35   3.85 0.6262
WVFGRD96   22.0   120    55    35   3.85 0.6288
WVFGRD96   23.0   120    55    35   3.86 0.6321
WVFGRD96   24.0   120    55    35   3.86 0.6326
WVFGRD96   25.0   120    55    35   3.87 0.6339
WVFGRD96   26.0   120    55    30   3.88 0.6332
WVFGRD96   27.0   120    55    30   3.88 0.6332
WVFGRD96   28.0   120    55    30   3.89 0.6311
WVFGRD96   29.0   120    55    30   3.89 0.6295
WVFGRD96   30.0   120    60    35   3.90 0.6267
WVFGRD96   31.0   120    60    30   3.91 0.6266
WVFGRD96   32.0   120    60    30   3.92 0.6239
WVFGRD96   33.0   120    60    30   3.92 0.6219
WVFGRD96   34.0   120    60    30   3.93 0.6180
WVFGRD96   35.0   120    60    25   3.94 0.6134
WVFGRD96   36.0   120    60    25   3.94 0.6089
WVFGRD96   37.0   120    60    25   3.95 0.6019
WVFGRD96   38.0   120    65    25   3.97 0.5967
WVFGRD96   39.0   120    65    20   3.98 0.5928
WVFGRD96   40.0   125    60    35   4.06 0.6011
WVFGRD96   41.0   125    60    40   4.06 0.5998
WVFGRD96   42.0   125    60    35   4.07 0.5947
WVFGRD96   43.0   125    60    35   4.08 0.5917
WVFGRD96   44.0   125    60    35   4.08 0.5857
WVFGRD96   45.0   125    60    35   4.09 0.5815
WVFGRD96   46.0   125    60    35   4.09 0.5755
WVFGRD96   47.0   125    60    35   4.10 0.5702
WVFGRD96   48.0   125    60    35   4.10 0.5645
WVFGRD96   49.0   125    60    35   4.11 0.5580

The best solution is

WVFGRD96   25.0   120    55    35   3.87 0.6339

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Thu May 16 00:06:07 CDT 2013

Last Changed 2013/05/15