Location

The EMSC location is
2012/12/13 21:39:27 41.13 19.73 10.0 4.10 Albania

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports archive

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2012/12/13 21:39:27:0  41.13   19.73  10.0 4.1 Albania
 
 Stations used:
   HL.KEK HT.AGG HT.FNA HT.GRG HT.HORT HT.KNT HT.LIT HT.SOH 
   HT.SRS HT.THE HT.XOR MN.BLY MN.DIVS MN.PDG MN.TIR MN.VTS 
   RO.BZS RO.DEV RO.LOT SJ.BBLS SJ.FRGS SL.BOJS SL.GCIS 
   SL.KOGS SL.SKDS 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 1.78e+22 dyne-cm
  Mw = 4.10 
  Z  = 26 km
  Plane   Strike  Dip  Rake
   NP1      167    57   130
   NP2      290    50    45
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.78e+22     57     134
    N   0.00e+00     33     323
    P  -1.78e+22      4     230

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.74e+21
       Mxy    -1.14e+22
       Mxz    -4.82e+21
       Myy    -7.64e+21
       Myz     6.85e+21
       Mzz     1.24e+22
                                                     
                                                     
                                                     
                                                     
                     ##------------                  
                 #####-----------------              
              #######---------------------           
             #######-----------------------          
           #########-------------------------        
          ####-----##########-----------------       
         #---------###############-------------      
        -----------##################-----------     
        -----------#####################--------     
       ------------#######################-------    
       ------------#########################-----    
       -------------#########################----    
       -------------##########################---    
        -------------############   ###########-     
        -------------############ T ###########-     
         -------------###########   ###########      
          -------------#######################       
           -   ---------#####################        
             P ----------##################          
               ------------###############           
                 ------------##########              
                     ----------####                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.24e+22  -4.82e+21  -6.85e+21 
 -4.82e+21  -4.74e+21   1.14e+22 
 -6.85e+21   1.14e+22  -7.64e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20121213213927/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 290
      DIP = 50
     RAKE = 45
       MW = 4.10
       HS = 26.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2012/12/13 21:39:27:0  41.13   19.73  10.0 4.1 Albania
 
 Stations used:
   HL.KEK HT.AGG HT.FNA HT.GRG HT.HORT HT.KNT HT.LIT HT.SOH 
   HT.SRS HT.THE HT.XOR MN.BLY MN.DIVS MN.PDG MN.TIR MN.VTS 
   RO.BZS RO.DEV RO.LOT SJ.BBLS SJ.FRGS SL.BOJS SL.GCIS 
   SL.KOGS SL.SKDS 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 1.78e+22 dyne-cm
  Mw = 4.10 
  Z  = 26 km
  Plane   Strike  Dip  Rake
   NP1      167    57   130
   NP2      290    50    45
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.78e+22     57     134
    N   0.00e+00     33     323
    P  -1.78e+22      4     230

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.74e+21
       Mxy    -1.14e+22
       Mxz    -4.82e+21
       Myy    -7.64e+21
       Myz     6.85e+21
       Mzz     1.24e+22
                                                     
                                                     
                                                     
                                                     
                     ##------------                  
                 #####-----------------              
              #######---------------------           
             #######-----------------------          
           #########-------------------------        
          ####-----##########-----------------       
         #---------###############-------------      
        -----------##################-----------     
        -----------#####################--------     
       ------------#######################-------    
       ------------#########################-----    
       -------------#########################----    
       -------------##########################---    
        -------------############   ###########-     
        -------------############ T ###########-     
         -------------###########   ###########      
          -------------#######################       
           -   ---------#####################        
             P ----------##################          
               ------------###############           
                 ------------##########              
                     ----------####                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.24e+22  -4.82e+21  -6.85e+21 
 -4.82e+21  -4.74e+21   1.14e+22 
 -6.85e+21   1.14e+22  -7.64e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20121213213927/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   335    45   -90   3.69 0.2918
WVFGRD96    1.0   155    45   -90   3.73 0.2870
WVFGRD96    2.0   155    45   -90   3.83 0.3603
WVFGRD96    3.0    40    45   -80   3.84 0.3508
WVFGRD96    4.0    50    80    -5   3.83 0.3266
WVFGRD96    5.0    50    80     0   3.87 0.3241
WVFGRD96    6.0    50    75     0   3.89 0.3144
WVFGRD96    7.0    50    70     5   3.91 0.3069
WVFGRD96    8.0   265    70    40   3.86 0.3104
WVFGRD96    9.0   270    70    45   3.88 0.3321
WVFGRD96   10.0   285    55    40   3.92 0.3614
WVFGRD96   11.0   290    50    45   3.95 0.3993
WVFGRD96   12.0   290    50    45   3.96 0.4379
WVFGRD96   13.0   295    45    50   3.99 0.4725
WVFGRD96   14.0   295    45    50   4.00 0.5030
WVFGRD96   15.0   295    45    50   4.01 0.5304
WVFGRD96   16.0   295    45    50   4.02 0.5527
WVFGRD96   17.0   295    45    50   4.03 0.5719
WVFGRD96   18.0   295    45    50   4.03 0.5886
WVFGRD96   19.0   295    45    50   4.04 0.6022
WVFGRD96   20.0   295    45    50   4.05 0.6145
WVFGRD96   21.0   295    45    50   4.06 0.6235
WVFGRD96   22.0   295    45    50   4.07 0.6312
WVFGRD96   23.0   295    45    50   4.08 0.6380
WVFGRD96   24.0   295    45    50   4.08 0.6422
WVFGRD96   25.0   290    50    45   4.09 0.6459
WVFGRD96   26.0   290    50    45   4.10 0.6476
WVFGRD96   27.0   290    50    45   4.11 0.6473
WVFGRD96   28.0   290    50    45   4.11 0.6461
WVFGRD96   29.0   290    50    45   4.12 0.6434
WVFGRD96   30.0   290    50    45   4.13 0.6394
WVFGRD96   31.0   290    50    45   4.13 0.6343
WVFGRD96   32.0   290    50    45   4.14 0.6278
WVFGRD96   33.0   290    50    45   4.15 0.6204
WVFGRD96   34.0   110    50    45   4.16 0.6138
WVFGRD96   35.0   110    50    45   4.17 0.6052
WVFGRD96   36.0   110    50    45   4.18 0.5965
WVFGRD96   37.0   110    50    45   4.19 0.5873
WVFGRD96   38.0   110    50    45   4.20 0.5763
WVFGRD96   39.0   110    50    45   4.21 0.5648
WVFGRD96   40.0   120    50    50   4.32 0.5697
WVFGRD96   41.0   120    50    50   4.33 0.5642
WVFGRD96   42.0   120    50    50   4.33 0.5566
WVFGRD96   43.0   120    50    55   4.33 0.5483
WVFGRD96   44.0   120    50    55   4.34 0.5394
WVFGRD96   45.0   120    50    55   4.35 0.5294
WVFGRD96   46.0   120    50    55   4.35 0.5188
WVFGRD96   47.0   120    55    55   4.36 0.5076
WVFGRD96   48.0   120    55    55   4.37 0.4967
WVFGRD96   49.0   125    55    65   4.37 0.4853

The best solution is

WVFGRD96   26.0   290    50    45   4.10 0.6476

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Thu Dec 13 20:03:00 CST 2012

Last Changed 2012/12/13