Location

SLU Solution

The program elocate was used to locate this earthquake. The results are in the file elocate.txt. The reason for the relocation was that the USGS location was about 10 south of the EMSC location and the delay plot, such as at the bottom of this page, indicate the need for a change in epicenter.

2012/11/28 01:49:45 42.47 20.06 16.3 4.2 Albania

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports archive

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2012/11/28 01:49:45:0  42.47   20.06  16.3 4.2 Albania
 
 Stations used:
   HL.KEK HT.AGG HT.GRG HT.KNT HT.LIT HT.SOH HT.SRS HT.THE 
   HT.XOR MN.BLY MN.DIVS MN.PDG MN.TIR MN.VTS RO.BZS RO.VOIR 
   SJ.BBLS SJ.FRGS 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.05 n 3
 
 Best Fitting Double Couple
  Mo = 1.26e+22 dyne-cm
  Mw = 4.00 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      275    65   -90
   NP2       95    25   -90
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.26e+22     20       5
    N   0.00e+00     -0      95
    P  -1.26e+22     70     185

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     9.57e+21
       Mxy     8.37e+20
       Mxz     8.06e+21
       Myy     7.33e+19
       Myz     7.05e+20
       Mzz    -9.64e+21
                                                     
                                                     
                                                     
                                                     
                     #######   ####                  
                 ########### T ########              
              ##############   ###########           
             ##############################          
           ##################################        
          ####################################       
         ######################################      
        ###############---######################     
        #####-------------------------##########     
       ##---------------------------------#######    
       ---------------------------------------###    
       #----------------------------------------#    
       ##-----------------   -------------------#    
        #----------------- P -------------------     
        ###---------------   -----------------##     
         ###---------------------------------##      
          ####-----------------------------###       
           #####-------------------------####        
             ######-------------------#####          
              #############---############           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -9.64e+21   8.06e+21  -7.05e+20 
  8.06e+21   9.57e+21  -8.37e+20 
 -7.05e+20  -8.37e+20   7.33e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20121128014945/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 275
      DIP = 65
     RAKE = -90
       MW = 4.00
       HS = 12.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2012/11/28 01:49:45:0  42.47   20.06  16.3 4.2 Albania
 
 Stations used:
   HL.KEK HT.AGG HT.GRG HT.KNT HT.LIT HT.SOH HT.SRS HT.THE 
   HT.XOR MN.BLY MN.DIVS MN.PDG MN.TIR MN.VTS RO.BZS RO.VOIR 
   SJ.BBLS SJ.FRGS 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.05 n 3
 
 Best Fitting Double Couple
  Mo = 1.26e+22 dyne-cm
  Mw = 4.00 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      275    65   -90
   NP2       95    25   -90
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.26e+22     20       5
    N   0.00e+00     -0      95
    P  -1.26e+22     70     185

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     9.57e+21
       Mxy     8.37e+20
       Mxz     8.06e+21
       Myy     7.33e+19
       Myz     7.05e+20
       Mzz    -9.64e+21
                                                     
                                                     
                                                     
                                                     
                     #######   ####                  
                 ########### T ########              
              ##############   ###########           
             ##############################          
           ##################################        
          ####################################       
         ######################################      
        ###############---######################     
        #####-------------------------##########     
       ##---------------------------------#######    
       ---------------------------------------###    
       #----------------------------------------#    
       ##-----------------   -------------------#    
        #----------------- P -------------------     
        ###---------------   -----------------##     
         ###---------------------------------##      
          ####-----------------------------###       
           #####-------------------------####        
             ######-------------------#####          
              #############---############           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -9.64e+21   8.06e+21  -7.05e+20 
  8.06e+21   9.57e+21  -8.37e+20 
 -7.05e+20  -8.37e+20   7.33e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20121128014945/index.html
	


First motions and takeoff angles from an elocate run.

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.05 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    90    35   -95   3.71 0.4028
WVFGRD96    1.0   265    50  -100   3.74 0.4068
WVFGRD96    2.0   105    35   -70   3.83 0.4499
WVFGRD96    3.0   285    60   -75   3.88 0.4340
WVFGRD96    4.0   115    30   -50   3.91 0.3976
WVFGRD96    5.0   120    25   -45   3.91 0.4019
WVFGRD96    6.0   110    20   -65   3.92 0.4341
WVFGRD96    7.0   100    20   -80   3.93 0.4644
WVFGRD96    8.0   100    20   -80   4.00 0.5039
WVFGRD96    9.0    90    20   -95   4.00 0.5268
WVFGRD96   10.0    90    25   -95   4.01 0.5408
WVFGRD96   11.0   275    65   -90   4.01 0.5490
WVFGRD96   12.0   275    65   -90   4.00 0.5498
WVFGRD96   13.0   280    65   -85   4.00 0.5461
WVFGRD96   14.0   280    65   -85   4.00 0.5380
WVFGRD96   15.0   280    65   -85   3.99 0.5270
WVFGRD96   16.0   280    70   -85   3.98 0.5144
WVFGRD96   17.0   280    70   -85   3.98 0.5016
WVFGRD96   18.0   285    70   -80   3.98 0.4893
WVFGRD96   19.0   285    70   -80   3.98 0.4771
WVFGRD96   20.0   285    75   -80   3.97 0.4642
WVFGRD96   21.0   285    75   -80   3.98 0.4558
WVFGRD96   22.0   285    75   -80   3.98 0.4433
WVFGRD96   23.0   285    75   -80   3.98 0.4309
WVFGRD96   24.0   285    75   -80   3.98 0.4182
WVFGRD96   25.0   285    80   -75   3.98 0.4061
WVFGRD96   26.0   285    85   -75   3.98 0.3941
WVFGRD96   27.0   285    85   -75   3.99 0.3825
WVFGRD96   28.0    95    75    75   3.98 0.3749
WVFGRD96   29.0    95    75    75   3.99 0.3655

The best solution is

WVFGRD96   12.0   275    65   -90   4.00 0.5498

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.05 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Wed Nov 28 09:01:45 CST 2012

Last Changed 2012/11/28