Location

2012/11/12 23:18:42 42.558 19.021 14.0 4.60 Montenegro

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports archive

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2012/11/12 23:18:42:5  42.56   19.02  14.0 4.6 Montenegro
 
 Stations used:
   HT.AGG HT.FNA HT.GRG HU.BUD MN.BLY MN.DIVS MN.PDG MN.TIR 
   MN.TRI MN.VTS RO.BZS RO.DEV RO.VOIR SJ.BBLS SJ.FRGS 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 5.37e+22 dyne-cm
  Mw = 4.42 
  Z  = 26 km
  Plane   Strike  Dip  Rake
   NP1      109    55    87
   NP2      295    35    95
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.37e+22     80       5
    N   0.00e+00      3     111
    P  -5.37e+22     10     201

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.33e+22
       Mxy    -1.75e+22
       Mxz     1.82e+22
       Myy    -6.92e+21
       Myz     4.26e+21
       Mzz     5.03e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             -----###########--------------          
           --#####################-----------        
          -##########################---------       
         ###############################-------      
        ##################################------     
        -##################   #############-----     
       ---################# T ##############-----    
       ----################   ###############----    
       ------#################################---    
       --------###############################---    
        ----------#############################-     
        -------------##########################-     
         ----------------####################--      
          ------------------------------------       
           ----------------------------------        
             ------------------------------          
              ------   -------------------           
                 --- P ----------------              
                       ------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.03e+22   1.82e+22  -4.26e+21 
  1.82e+22  -4.33e+22   1.75e+22 
 -4.26e+21   1.75e+22  -6.92e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20121112231842/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 295
      DIP = 35
     RAKE = 95
       MW = 4.42
       HS = 26.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2012/11/12 23:18:42:5  42.56   19.02  14.0 4.6 Montenegro
 
 Stations used:
   HT.AGG HT.FNA HT.GRG HU.BUD MN.BLY MN.DIVS MN.PDG MN.TIR 
   MN.TRI MN.VTS RO.BZS RO.DEV RO.VOIR SJ.BBLS SJ.FRGS 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 5.37e+22 dyne-cm
  Mw = 4.42 
  Z  = 26 km
  Plane   Strike  Dip  Rake
   NP1      109    55    87
   NP2      295    35    95
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.37e+22     80       5
    N   0.00e+00      3     111
    P  -5.37e+22     10     201

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.33e+22
       Mxy    -1.75e+22
       Mxz     1.82e+22
       Myy    -6.92e+21
       Myz     4.26e+21
       Mzz     5.03e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             -----###########--------------          
           --#####################-----------        
          -##########################---------       
         ###############################-------      
        ##################################------     
        -##################   #############-----     
       ---################# T ##############-----    
       ----################   ###############----    
       ------#################################---    
       --------###############################---    
        ----------#############################-     
        -------------##########################-     
         ----------------####################--      
          ------------------------------------       
           ----------------------------------        
             ------------------------------          
              ------   -------------------           
                 --- P ----------------              
                       ------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.03e+22   1.82e+22  -4.26e+21 
  1.82e+22  -4.33e+22   1.75e+22 
 -4.26e+21   1.75e+22  -6.92e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.EU/20121112231842/index.html
	
USGS/SLU Regional Moment Solution
MONTENEGRO

12/11/12 23:18:42.63

Epicenter:  42.587   19.018
MW 4.4

USGS/SLU REGIONAL MOMENT TENSOR
Depth  25         No. of sta: 19
Moment Tensor;   Scale 10**15 Nm
  Mrr= 5.70       Mtt=-4.76
  Mpp=-0.93       Mrt= 0.63
  Mrp=-1.20       Mtp= 2.13
 Principal axes:
  T  Val=  5.91  Plg=80  Azm= 81
  N       -0.10       8      296
  P       -5.81       5      205

Best Double Couple:Mo=5.9*10**15
 NP1:Strike=286 Dip=40 Slip=  78
 NP2:       122     51       100


        

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   290    45   -90   4.03 0.3185
WVFGRD96    1.0   110    45   -90   4.06 0.3047
WVFGRD96    2.0   110    50   -90   4.17 0.3810
WVFGRD96    3.0   280    40   -85   4.21 0.3597
WVFGRD96    4.0   275    40   -90   4.22 0.2883
WVFGRD96    5.0   155    40   -10   4.15 0.2690
WVFGRD96    6.0   160    40     5   4.15 0.2876
WVFGRD96    7.0   165    40    15   4.16 0.3105
WVFGRD96    8.0   160    30     0   4.23 0.3253
WVFGRD96    9.0   165    30    10   4.23 0.3497
WVFGRD96   10.0    85    75    70   4.27 0.3864
WVFGRD96   11.0    90    70    70   4.30 0.4277
WVFGRD96   12.0    90    70    70   4.30 0.4678
WVFGRD96   13.0    95    65    75   4.33 0.5062
WVFGRD96   14.0    95    60    70   4.35 0.5396
WVFGRD96   15.0    95    60    70   4.35 0.5702
WVFGRD96   16.0   100    60    75   4.36 0.5956
WVFGRD96   17.0   100    60    75   4.37 0.6161
WVFGRD96   18.0   100    60    75   4.37 0.6324
WVFGRD96   19.0   100    55    75   4.38 0.6459
WVFGRD96   20.0   100    55    75   4.39 0.6568
WVFGRD96   21.0   105    55    80   4.40 0.6644
WVFGRD96   22.0   105    55    80   4.41 0.6703
WVFGRD96   23.0   105    55    80   4.41 0.6750
WVFGRD96   24.0   105    55    80   4.41 0.6776
WVFGRD96   25.0   105    55    85   4.41 0.6789
WVFGRD96   26.0   295    35    95   4.42 0.6790
WVFGRD96   27.0   110    55    90   4.43 0.6778
WVFGRD96   28.0   110    50    90   4.43 0.6761
WVFGRD96   29.0   110    50    90   4.44 0.6737
WVFGRD96   30.0   115    50    95   4.45 0.6698
WVFGRD96   31.0   290    40    85   4.46 0.6654
WVFGRD96   32.0   115    50    95   4.46 0.6598
WVFGRD96   33.0   115    50    95   4.47 0.6538
WVFGRD96   34.0   285    40    80   4.48 0.6467
WVFGRD96   35.0   285    40    80   4.49 0.6394
WVFGRD96   36.0   285    40    80   4.50 0.6308
WVFGRD96   37.0   285    40    80   4.51 0.6224
WVFGRD96   38.0   285    40    75   4.53 0.6131
WVFGRD96   39.0   285    40    75   4.55 0.6034

The best solution is

WVFGRD96   26.0   295    35    95   4.42 0.6790

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Tue Nov 13 07:42:58 CST 2012

Last Changed 2012/11/12