2011/02/14 06:02:55 31.9759 -5.7860 16 4.90 MOROCCO
SLU Moment Tensor Solution
ENS 2011/02/14 06:02:55:0 31.98 -5.79 16.0 4.9 MOROCCO
Stations used:
IB.M019 IB.M201 IB.M206 IB.M211 IB.M214 IB.M215 IB.M216
WM.AVE
Filtering commands used:
hp c 0.02 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 5.96e+22 dyne-cm
Mw = 4.45
Z = 11 km
Plane Strike Dip Rake
NP1 307 80 -170
NP2 215 80 -10
Principal Axes:
Axis Value Plunge Azimuth
T 5.96e+22 0 81
N 0.00e+00 76 350
P -5.96e+22 14 171
Moment Tensor: (dyne-cm)
Component Value
Mxx -5.31e+22
Mxy 1.81e+22
Mxz 1.39e+22
Myy 5.67e+22
Myz -2.12e+21
Mzz -3.54e+21
--------------
----------------------
------------------------####
-----------------------#######
##---------------------###########
#######----------------#############
###########-----------################
###############-------##################
##################--###################
####################-################### T
###################-----################
#################---------################
################------------##############
##############----------------##########
#############-------------------########
###########---------------------######
#########------------------------###
#######--------------------------#
####--------------------------
##------------- ----------
------------ P -------
-------- ---
Global CMT Convention Moment Tensor:
R T P
-3.54e+21 1.39e+22 2.12e+21
1.39e+22 -5.31e+22 -1.81e+22
2.12e+21 -1.81e+22 5.67e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110214060255/index.html
|
STK = 215
DIP = 80
RAKE = -10
MW = 4.45
HS = 11.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution
ENS 2011/02/14 06:02:54:0 31.95 -6.19 3.0 4.9 MOROCCO
Stations used:
IB.M019 IB.M201 IB.M206 IB.M211 IB.M214 IB.M215 IB.M216
WM.AVE
Filtering commands used:
hp c 0.02 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 5.96e+22 dyne-cm
Mw = 4.45
Z = 11 km
Plane Strike Dip Rake
NP1 307 80 -170
NP2 215 80 -10
Principal Axes:
Axis Value Plunge Azimuth
T 5.96e+22 0 81
N 0.00e+00 76 350
P -5.96e+22 14 171
Moment Tensor: (dyne-cm)
Component Value
Mxx -5.31e+22
Mxy 1.81e+22
Mxz 1.39e+22
Myy 5.67e+22
Myz -2.12e+21
Mzz -3.54e+21
--------------
----------------------
------------------------####
-----------------------#######
##---------------------###########
#######----------------#############
###########-----------################
###############-------##################
##################--###################
####################-################### T
###################-----################
#################---------################
################------------##############
##############----------------##########
#############-------------------########
###########---------------------######
#########------------------------###
#######--------------------------#
####--------------------------
##------------- ----------
------------ P -------
-------- ---
Global CMT Convention Moment Tensor:
R T P
-3.54e+21 1.39e+22 2.12e+21
1.39e+22 -5.31e+22 -1.81e+22
2.12e+21 -1.81e+22 5.67e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110214060254/index.html
SLU Moment Tensor Solution
ENS 2011/02/14 06:02:55:0 31.98 -5.79 16.0 4.9 MOROCCO
Stations used:
IB.M019 IB.M201 IB.M206 IB.M211 IB.M214 IB.M215 IB.M216
WM.AVE
Filtering commands used:
hp c 0.02 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 5.96e+22 dyne-cm
Mw = 4.45
Z = 11 km
Plane Strike Dip Rake
NP1 307 80 -170
NP2 215 80 -10
Principal Axes:
Axis Value Plunge Azimuth
T 5.96e+22 0 81
N 0.00e+00 76 350
P -5.96e+22 14 171
Moment Tensor: (dyne-cm)
Component Value
Mxx -5.31e+22
Mxy 1.81e+22
Mxz 1.39e+22
Myy 5.67e+22
Myz -2.12e+21
Mzz -3.54e+21
--------------
----------------------
------------------------####
-----------------------#######
##---------------------###########
#######----------------#############
###########-----------################
###############-------##################
##################--###################
####################-################### T
###################-----################
#################---------################
################------------##############
##############----------------##########
#############-------------------########
###########---------------------######
#########------------------------###
#######--------------------------#
####--------------------------
##------------- ----------
------------ P -------
-------- ---
Global CMT Convention Moment Tensor:
R T P
-3.54e+21 1.39e+22 2.12e+21
1.39e+22 -5.31e+22 -1.81e+22
2.12e+21 -1.81e+22 5.67e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110214060255/index.html
|
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 0.5 300 65 -35 3.99 0.1840
WVFGRD96 1.0 305 75 -15 3.96 0.1876
WVFGRD96 2.0 220 70 20 4.12 0.2526
WVFGRD96 3.0 35 90 0 4.16 0.2826
WVFGRD96 4.0 40 80 20 4.21 0.3079
WVFGRD96 5.0 220 90 -20 4.24 0.3327
WVFGRD96 6.0 220 80 15 4.29 0.3589
WVFGRD96 7.0 220 85 15 4.32 0.3845
WVFGRD96 8.0 220 85 15 4.37 0.4104
WVFGRD96 9.0 215 75 -10 4.41 0.4258
WVFGRD96 10.0 215 80 -10 4.43 0.4347
WVFGRD96 11.0 215 80 -10 4.45 0.4394
WVFGRD96 12.0 40 90 -10 4.46 0.4373
WVFGRD96 13.0 40 90 -10 4.48 0.4338
WVFGRD96 14.0 220 90 10 4.49 0.4275
WVFGRD96 15.0 220 90 10 4.51 0.4187
WVFGRD96 16.0 40 90 -10 4.52 0.4076
WVFGRD96 17.0 220 90 10 4.53 0.3957
WVFGRD96 18.0 220 90 10 4.54 0.3827
WVFGRD96 19.0 220 90 10 4.54 0.3682
WVFGRD96 20.0 220 90 10 4.55 0.3533
WVFGRD96 21.0 40 90 -10 4.56 0.3378
WVFGRD96 22.0 220 90 10 4.56 0.3214
WVFGRD96 23.0 40 90 -10 4.56 0.3051
WVFGRD96 24.0 40 90 -10 4.56 0.2883
WVFGRD96 25.0 40 90 -10 4.56 0.2728
WVFGRD96 26.0 40 90 -10 4.56 0.2576
WVFGRD96 27.0 220 85 10 4.56 0.2432
WVFGRD96 28.0 310 80 10 4.56 0.2373
WVFGRD96 29.0 310 80 10 4.57 0.2372
The best solution is
WVFGRD96 11.0 215 80 -10 4.45 0.4394
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
|
|
|
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: