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The layered elastic medium

1.1 Generalized reflection and transmission matrices

The propagator matrix technique introduced in Chapter 3 and used in this chap-

ter provides an easily understandable technique for solving the wave propagation

problem. However when the vertical wavenumber, ν, is real, the exponentially in-

creasing terms can lead to numerical problems. The reflection matrix technique of

Kennett and Kerry (1979) avoids increasing exponential terms and also provides

an insight as to the contribution of individual generalized rays. Chen (1993) in-

troduced a recursive technique that shares the numerical stability of the reflection

matrix technique, but which emphasizes computational efficiency. The following

reviews the development of Pei et al. (2008, 2009) which adapts Chen (1993) and

extends it to handle arbitrary boundary conditions at the top and bottom of the layer

stack.

The relation between the displacement stress vector B and the potential coeffi-

cient vector K is given by

B = EΛK (1.1)

or

[

U

T

]

= E

[

e
νz 0

0 e
−νz

] [

K
U

K
D

]

(1.2)

The notation e
νz represents a scalar, or 1x1 matrix, eνz for the SH and fluid prob-

lems, or the 2x2 diagonal matrix with elements eναz and eνβz to represent P- and

SV-wavefields, respectively. If the problem to be solved is fully anisotropic, then

this would represent a 3x3 diagonal matrix. We will continue to use the e
νz notation

in this development to emphasize the generality of the approach.

The useful insight of Chen (1993) and Pei et al. (2008, 2009) is to rewrite (1.2)
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Figure 1.1 Model of layered isotropic medium, showing depths to the interfaces,
the stress-displacement vectors at the interfaces, layer thicknesses and the medium
parameters within the layers. The source is in layer m at a depth zs.

for the region z j−1 ≤ z ≤ z j as

B(z) =

[
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]

= E
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(1.3)

Here the ν j represents the vertical wavenumber for layer j. The result of introduc-

ing C means that it is not necessary to consider the wave delays through a layer

and reflection/transmission coefficients as separate stages in the development. This

definition also has the advantage that the elements of the diagonal matrix preceding

the C’s are always bounded in magnitude by unity for z j−1 ≤ z ≤ z j because of our

definition of the ν j.

To extend this new notation to a layered medium, consider Figure 1.1. Further

suppose that the boundary conditions at the top, z = z0, and the bottom, z = zN−1,

have the form

B0 = H

[

F

0

]

and

BN−1 = G
−1

[

0

D

]

As noted previously, the introduction of the G and H matrices permits consider-

ation of halfspace, rigid or stress free boundary conditions. The determination of

the medium response requires consideration of responses to upward and downward

propagating signals.
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Figure 1.2 Model for development of the generalized R/T coefficients. The layer
thicknesses, velocities, densities and displacement-stress functions are indicated.

Bottom-up processing

We first consider the adjacent layers shown in Figure 1.2 and focus first on the

boundary conditions at z j which require continuity of B, e.g., B j(z j) = B j+1(z j),

where the notation B j(z) means the value of B in layer j at depth z using the C
j

U,D

parameters. Using (1.3), we have

E j
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] 








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
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
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(1.4)

To facilitate discussion, we focus on the response due to a downward propagat-

ing signal from the top of layer j onto the boundary at z j. There will be a reflec-

tion, a transmission, and also the effect of signals returned from deeper layers.

We further define C
j

U
= R̂

j

D
C

j

D
and C

j+1

D
= T̂

j

D
C

j

D
. From these we also have

C
j+1

U
= R̂

j+1

D
C

j+1

D
= R̂

j+1

D
T̂

j

D
C

j

D
. The symbols R̂D and T̂D are called the gen-

eralized R/T coefficients, respectively, and represent reflection and transmission

responses in a simplified notation, but, unlike the R/T coefficients of Kennett and

Kerry (1979) cannot be used as the reflection and transmission coefficients of in-

dividual wavefield components at the boundary because they include the delays

associated with the ν j terms.

After factoring the common C
j

D
we have
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Defining E = E
−1
j

E j+1, and partitioning E into square sub-matrices, e.g.,

E =

[

E11 E12

E21 E22

]

we obtain the following recurrence relations:

T̂
j

D
=

(

E21e
−ν j+1d j+1R̂

j+1

D
+ E22

)−1
e
−ν jd j

R̂
j

D
=

(

E11e
−ν j+1d j+1 R̂

j+1

D
+ E12

)

T̂
j

D

(1.5)
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The order of multiplication is important since the individual terms are 2x2 matrices

for the isotropic or transverse isotropic P-SV problems.

This now sets the formalism for computation. If we can specify, R̂
N−1
D

, then we

can compute T̂
N−2
D

and R̂
N−2
D

, and continue upward until we have T̂
1
D

and R̂
1
D

.

At zN−1, the bottom of the layer N − 1’st layer, we have

[

0

D

]

= GEN−1

[

I 0

0 e
−νN−1dN−1

] [

R̂
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D

I

]

C
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[

I 0
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] [

R̂
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D

I

]

C
N−1
D

(1.6)

from which

0 = (a11R̂
N−1
D + a12e

−νN−1dN−1)CN−1
D

and thes we obtain R̂
N−1
D
= −a

−1
11

a12e
−νN−1dN−1 . The specific condition to use de-

pends on the problem.

Top - down processing

An alternative treatment is to start at (1.4), but now define define C
j+1

D
= R̂

j+1

U
C

j+1

U

and C
j

U
= T̂

j+1

U
C

j+1

U
. From these we also have C

j

D
= R̂

j

U
C

j

U
= R̂

j

U
T̂

j+1

U
C

j+1

U
. Start-

ing again with the continuity of B at z j, we have the following, after factoring the

common C
j+1

U
terms and using the R̂

j+1

U
and T̂

j+1

U
.
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I
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]

Defining F = E
−1
j+1

E j, and partitioning into square submatrices, we have the fol-

lowing recursive relations:

T̂
j+1

U
=

(

F11 + F12e
−ν jd j R̂

j

U

)−1
e
−ν j+1d j+1

R̂
j+1

U
=

(

F21 + F22e
−ν jd j R̂

j

U

)

T̂
j+1

U

(1.7)

To initiate the recursion, The boundary condition at the top is now written in terms

of the CU . At z0, the top of the layer stack,

[

F

0

]

= H
−1

E1

[

e
−ν1d1

R̂
1
U

]

C
1
U = b

[

e
−ν1d1

R̂
1
U

]

C
1
U

from which we have

0 = (b21e
−ν1d1 + b22R̂

1
U)C1

U

which is satisfied by R̂
1
U
= −b

−1
22

b21e
−ν1d1 . Thus a recursive scheme can also start

at the top boundary and progress downward in the layer stack.

Mixed solid-fluid medium

When the medium consists of a mixture of fluid and solid layers, the solution for
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P-SV wave propagation is more complicated. In the special case of the fluid layers

at the top or bottom of a stack of elastic layers, an approach involving a modifi-

cation of propagator matrices was introduced in §??. However the layer sequence

of alternating fluid and solid regions, such as a floating ice sheet, water and solid

earth, could not be handled. Chen and Chen (2002) extended the work of Chen

(1993) to address the problem of fluid layers overlying a stack of solid layers. This

section shows how this is accomplished using the notation of this section and also

extends the development to address the more general problem of intermixed fluid

and solid layers.

We will first consider a fluid layer overlying an elastic layer. Thus in Figure 1.2

let layer j be a fluid and j+1 be an elastic solid. To facilitate the discussion, we will

use the lower case symbols e, cu and cd when referring to the fluid (1.3) and the

upper case symbols E, CU and CD when referring to the underlying elastic layer.

Further CU = [CU, α,CU, β]
T is a 2x1 matrix as is CD. The boundary conditions at

z j are that Uz and Tz are continuous and that Tr = 0 in the solid. Expanding (1.4)

in detail gives
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j
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j
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c

j
u + e

j

22
e
−να j

d j c
j

d

= E
j+1

31
e
−να j+1

d j+1C
j+1

U ,α
+ E

j+1

32
e
−νβ j+1

d j+1C
j+1

U, β
+ E

j+1

33
C

j+1

D ,α
+ E
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Tr = 0

= E
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e
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44
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(1.8)

This notation is general enough to use with transverse isotropic media.

The recursion relations (1.5) and (1.7) permitted the specification of T̂
j

D
and

R̂
j

D
in terms of R̂

j+1

D
for bottom-up processing and T̂

j+1

U
and R̂

j+1

U
in terms of R̂

j

U

for top-down processing. For the fluid-solid boundary problem, a somewhat more

complicated relation is required to define the R̂U,D and T̂U,D.

First write (1.8) in matrix form
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For bottom-up recursion assume that R̂
j+1

D
is known. Define c

j
u = r̂

j

d
c

j

d
, Ĉ
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D
=
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D
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j

d
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d
. Note that r̂d is a 1x1 matrix and t̂d = [td, α, td, β]

T is a

2x1 matrix. Substituting and then factoring out the common c
j

d
gives:
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(1.10)

Expanding and rearranging the terms yields
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For top-down processing, assume that r̂
j
u is known. Defining the other constants

in terms of C
j+1

U
, c
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U
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.

Here r̂
j
u is 1x1, R̂

j+1

U
is 2x2 and T̂

j+1

U
is 1x2.

Placing these into (1.9) gives
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













e
−να j+1

d j+1 0 0 0

0 e
−νβ j+1

d j+1 0 0

0 0 1 0

0 0 0 1





































































1 0

0 1

R
j+1

U,11
R

j+1

U,12

R
j+1

U,21
R

j+1

U,22



































(1.12)
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Rearranging this leads to the equations

−

























E
j+1

21
E

j+1

22

E
j+1

31
E

j+1

32

E
j+1

41
E

j+1

42





































e
−να j+1

d j+1 0

0 e
−νβ j+1

d j+1













=

























E
j+1

23
E

j+1

24
−(e

j

11
+ e

j

12
e
−να j

d j jr
j
u)

E
j+1

33
E

j+1

34
−(e

j

21
+ e

j

22
e
−να j

d j jr
j
u)

E
j+1

43
E

j+1

44
0



















































R
j+1

U,11
R

j+1

U,12

R
j+1

U,21
R

j+1

U,22

T
j+1

U,α
T

j+1

U,β



























(1.13)

Note that the solution of (1.11) and (1.13) requires the inverse of a 3x3 matrix.

The beauty of (1.5) and (1.7) is that at most a 2x2 matrix inverse is required for

isotropic or transverse isotropic material. We could also have obtained the desired

T̂U,D and R̂U,D for the solid-solid problem through an expression similar to (1.11)

or (1.13), but then would have had to obtain the inverse of a 4x4 matrix for the

isotropic or transverse isotropic medium.

One must also consider the case for which layer j is elastic and j + 1 is a fluid.

The conditions at z j are

Uz = E
j

21
C

j

U, α
+ E

j

22
C

j

U, β
+ E

j

23
e
−να j

d jC
j

D, α
+ E

j

24
e
−νβ j

d jC
j

D, β

= e
j+1

11
e
−να j+1

d j+1 c
j+1
u + e

j+1

12
c

j+1

d

Tz = E
j

31
C

j

U, α
+ E

j

32
C

j

U, β
+ E

j

33
e
−να j

d jC
j

D, α
+ E

j

34
e
−νβ j

d jC
j

D, β

= e
j+1

21
e
−να j+1

d j+1 c
j+1
u + e

j+1

22
c

j+1

d

Tr = E
j

41
C

j

U, α
+ E

j

42
C

j

U, β
+ E

j

43
e
−να j

d jC
j

D, α
+ E

j

44
e
−νβ j

d jC
j

D, β

= 0

(1.14)

This can be rewritten as

























E
j

21
E

j

22
E

j

23
E

j

24

E
j

31
E

j

32
E

j

33
E

j

34

E
j

41
E

j

42
E

j

43
E

j

44



























































1 0 0 0

0 1 0 0

0 0 e
−να j

d j 0

0 0 0 e
−νβ j

d j









































































C
j

U, α

C
j

U, β

C
j

D, α

C
j

D, β







































=























e
j+1

11
e

j+1

12

e
j+1

21
e

j+1

22

0 0























[

e
−να j+1

d j+1 0

0 1

] 











c
j+1
u

c
j+1

d













(1.15)

For bottom-up processing r̂
j+1

d
is known and we define C

j

U
= R̂

j

D
C

j

D
, c

j+1

d
= T̂

j

D
C

j

D

and c
j+1
u = r̂

j+1

d
T̂

j

D
C

j

D
. Here T̂

j

D
is 1x2, R̂

j

D
is 2x2 and r̂

j+1

d
is 1x1. After factoring
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out the common C
j

D
, we have

























E
j

21
E

j

22
E

j

23
E

j

24

E
j

31
E

j

32
E

j

33
E

j

34

E
j

41
E

j

42
E

j

43
E

j

44





































R̂
j

D

e
−να j

d j













=























e
j+1

11
e

j+1

12

e
j+1

21
e

j+1

22

0 0



































e
−να j+1

d j+1
r̂

j+1

d
T̂

j

D

T̂
j

D













(1.16)

Expanding this gives

























E
j

21
E

j

22
−(e

j+1

11
e
−να j+1

d j+1 r
j+1

d
+ e

j+1

12
)

E
j

31
E

j

32
−(e

j+1

21
e
−να j+1

d j+1 r
j+1

d
+ e

j+1

22
)

E
j

41
E

j

42
0



















































R
j

D,11
R

j

D,12

R
j

D,21
R

j

D,22

T
j

D,α
T

j

D,β



























= −

























E
j

23
e
−να j

d j E
j

24
e
−νβ j

d j

E
j

33
e
−να j

d j E
j

34
e
−νβ j

d j

E
j

43
e
−να j

d j E
j

44
e
−νβ j

d j

























(1.17)

For top-down processing, we start with (1.15), R̂
j

U
is known and we define the

constants in terms of c
j+1
u as C

j

U
= t̂

j+1
u c

j+1
u , C

j

D
= R̂

j

U
Ĉ

j

U
= R̂

j

U
t̂

j+1
u c

j+1
u , and

c
j+1

d
= r̂

j+1
u c

j+1
u . Here r̂

j+1
u is 1x1, R̂

j

U
is 2x2 and t̂

j+1
u is 1x2. From these we obtain

























E
j

21
E

j

22
E

j

23
E

j

24

E
j

31
E

j

32
E

j

33
E

j

34

E
j

41
E

j

42
E

j

43
E

j

44



























































1 0

0 1

e
−να j

d j R
j

U,11
e
−να j

d j R
j

U,12

e
−νβ j

d j R
j

U,21
e
−νβ j

d j R
j

U,22

















































t
j+1
u, α

t
j+1

u, β















=























e
j+1

11
e

j+1

12

e
j+1

21
e

j+1

22

0 0



































e
−να j+1

d j+1 0

0 r
j+1
u













(1.18)

for the layer j fluid and layer j + 1 solid.

The system of equations to be solved are























e
j+1

21
e
−να j+1

d j+1

e
j+1

22
e
−να j+1

d j+1

0























=



























E
j

21
+ E

j

23
e
−να j

d j R
j

U,11
+ E

j

24
e
−νβ j

d j R
j

U,21

E
j

31
+ E

j

33
e
−να j

d j R
j

U,11
+ E

j

34
e
−νβ j

d j R
j

U,21

E
j

41
+ E

j

43
e
−να j

d j R
j

U,11
+ E

j

44
e
−νβ j

d j R
j

U,21

E
j

22
+ E

j

23
e
−να j

d j R
j

U,12
+ E

j

24
e
−νβ j

d j R
j

U,22
−e

j+1

12

E
j

32
+ E

j

33
e
−να j

d j R
j

U,12
+ E

j

34
e
−νβ j

d j R
j

U,22
−e

j+1

22

E
j

42
+ E

j

43
e
−να j

d j R
j

U,12
+ E

j

44
e
−νβ j

d j R
j

U,22
0



















































t
j+1
u,α

t
j+1

u,β

r
j+1
u

























(1.19)

For a medium with mixed fluid and solid properties, the logic for top-down pro-

cessing is as follows after identifying each layer as a fluid or solid. For simplicity,

we no longer distinguish between the upper and lower case matrices. First define

the R̂
1
U

which depends on the boundary condition at z0. Next examine the boundary
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at z1. If the medium type is the same on both sides, then use (1.7) to define the T̂
2
U

and R̂
2
U

. If the boundary separates a fluid from a solid, then use (1.12) or (1.19)

to get T̂
2
U

and R̂
2
U

. After this examine the boundary at z2, and select the method

to get T̂
3
U

and R̂
3
U

. For bottom-up processing, the boundary conditions are used to

define R̂
N−1
D

, and then one examines the nature of the boundary at zN−2 to select

the technique for computing T̂
N−1
D

and R̂
N−1
D

. After this then consider the nature at

the next boundary above.

Boundary conditions

The G and H matrices for the boundary conditions of free surface, rigid surface

and halfspace are given in Table 1.1

Table 1.1 Boundary conditions

Matrix Free Rigid Halfspace

H

[

I 0

0 I

] [

0 I

I 0

]

E0

G

[

0 I

I 0

] [

I 0

0 I

]

E
−1
N

Of these matrices the E
−1
N

will have problems when the ν function is zero. This

arises in part because the solution given in (1.2) is not correct for this case since the

concept of upward and downward propagating or attenuating solutions in a region

no longer holds. As a temporary expedient, one can let ν be a small number. Of

course, if the medium velocities are complex because of anelastic attenuation or if

the frequency is complex to avoid singularities on the real wavenumber axis, this

problem should not arise.

Trapped modes

For the surface-wave or trapped-mode problems, one searches for the particular

combination of frequency and phase velocity that satisfies the boundary conditions

at the top and bottom of the layer stack. The bottom-up determination of R̂
j

D
uses

the boundary condition at the bottom, while the top-down determination of R̂
j

U

starts with the boundary condition at the surface. Recalling the definitions relating

the C’s in layer j to the generalized reflection coefficients, we must have for generality we no long

distinguish between c and C

or r and R or t and T

C
j

U
= R̂

j

D
C

j

D
and C

j

D
= R̂

j

U
C

j

U

and which are satisfied by either

(I − R̂
j

D
R̂

j

U
)C

j

U
= 0 or (I − R̂

j

U
R̂

j

D
)C

j

D
= 0

does this work for the

Rayleigh wave halfspace?
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The trapped mode problem is now the solution of

det(I − R̂
j

U
R̂

j

D
) = 0 or det(I − R̂

j

D
R̂

j

U
) = 0 (1.20)

Note that the determinant is a complex quantity and thus one must search for the

(ω, c) that makes the determinant zero.

There are several advantages in applying the bottom-up and top-down approaches

together. For trapped-mode problems which have a low velocity zone within the

model, this approach will provide the correct eigenfunction shapes which may in-

volve oscillatory motion within the low velocity zone and exponentially decaying

solutions away from this zone. If the eigenfunctions are used to make synthetics,

the layer index j should be chosen such that the source is in that layer. Appendix

2 provides a simple example of the sequence of operations required to obtain the

eigenfunctions.

Embedded source

To address the wave propagation problem with a source, it is easiest to modify

the model by splitting a source layer so that the source occurs at a layer boundary of

the new working model. For the discussion here, we assume that the region above

and below the source have layer thicknesses, d, and vertical wavenumber ν with −

and + subscripts, respectively. The effect of the source can be described as either a

step in the displacement - stress vector or in the potential coefficients:

∆B = E

[

0

ΣD

]

− E

[

−ΣU

0

]

or

∆K = E
−1∆B =

[

ΣU

ΣD

]

To relate the potential coefficients K(z−s ) and K(z+s ) to the C’s above and below the

source, we use

K(z−s ) =

[

K
U(z−s )

K
D(z−s )

]

=

[

I 0

0 e
−ν−d−

] [

I

R̂
−
U

]

C
−
U

K(z+s ) =

[

K
U(z+s )

K
D(z+s )

]

=

[

e
−ν+d+ 0

0 I

] [

R̂
+
D

I

]

C
+
D

Combining we obtain

C
−
U = (I − e

−ν+d+R̂
+
De
−ν−d−R̂

−
U)−1 (e−ν+d+R̂

+
DΣ

D
− ΣU)

and

C
+
D = (I − e

−ν−d−R̂
−
Ue
−ν+d+R̂

+
D)−1(ΣD − e

−ν−d−R̂
−
UΣ

U)

For wave propagation above the source, the C
−
D

is obtained from the C
−
U

using the
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relation C
−
D
= R̂

−
U

C
−
U

. Given these, the B(z) is given by (1.3). The corresponding

values for layers above the source are obtained using the T̂U and R̂U computed

from the top-down recursion. Below the source we use C
+
U
= R̂

+
D

C
+
D

. Although

similar to the derivation in Kennett and Kerry (1979), this expression is seemingly

more complicated in appearance because of the need to recast the solution in terms

of the C’s.

To highlight the computation of the response for a source in a layer, a simple

case is discussed in Appendix 2

Exercises

1.1 After some manipulation, it can be show that these equations can be rear-

ranged into the following form:

























−E
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−E
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22
e
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e
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0
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









































e
−να j+1

d j+1 0 0

0 e
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d j+1 0

0 0 e
−να j

d j

















































C
j+1

U ,α

C
j+1

U ,β

c
j
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


















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










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


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
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E
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−e

j
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E
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−e
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E
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E
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44
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







































C
j+1

D ,α

C
j+1

D ,β

c
j
u

























(1.21)

To generalize these equations, define

C
j+1

D ,α
= t

j

d,α
c

j

d
C

j+1

D ,α
= R

j+1

U,11
CU ,α C

j+1

D ,α
= R

j+1

U,12
CU ,β

C
j+1

D ,β
= t

j

d,β
c

j

d
C

j+1

D ,β
= R

j+1

U,21
CU ,α C

j+1

D ,β
= R

j+1

U,22
CU ,β (1.22)

c
j
u = r

j

d
c

j

d
c

j
u = T

j+1

U ,α
CU ,α c

j
u = T

j+1

U ,β
CU ,β

and then insert into the previous equation to obtain
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t
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R
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t

j

d ,β

T
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U ,α
T
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U ,β
r
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d
























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(1.23)

This is essentially equation (16) of Chen and Chen (2002). The advantage of

this formulation is that one obtains R
j+1

U
, T

j+1

U
, r

j

d
and t

j

d
in just one operation,

but these modified reflection/transmission coefficients are not the generalized

reflection/transmission coefficients used in §1.1.



2

Generalized reflection matrices

To better understand the steps to implement the generalized reflection/transmission

technique of §1.1, the derivation of the solution for the trapped-mode eigenfunction

problem and the embedded source problem are presented in detail for a simple

problem.

We revisit the problem of a single fluid layer with a free surface overlying a fluid

halfspace that was the focus of Chapter ??. After defining all needed quantities,

they will be combined to form the trapped mode solution of §?? and the point

source problem of (??). Figure 2.1 shows the model.

For the problem of a wave propagation in a fluid, we have01 AUG 2019
check the dB to

dK which chapter
for dB 3 or 7 E =

[

ν −ν

−ρω2 −ρω2

]

E
−1 =

1

2ρνω2

[

ρω2 −ν

−ρω2 −ν

]

The source is that used in §??

∆K =

[

−2π/ν

2π/ν

]

=

[

ΣU

ΣD

]

To apply the boundary conditions at the z = H we need the matrices E
−1
1

E2 and

z 0=0  B ( 0 )  
z  α 1 ρ 1

z 1=z  B ( z )  
h - z  α 1 ρ 1

z 2=h  B ( h )  
H-h  α 1 ρ 1

z 3=H  B ( H )  
α 2 ρ 2

Figure 2.1 Fluid model for testing generalized reflection/transmission matrix
technique. The layer is of thickness H, The source is at a depth of h and the
response is to be determined at Z < h.
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E
−1
2

E1

E
−1
1 E2 =

1

2ρ1ν1

[

ρ2ν1 + ρ1ν ρ2ν1 − ρ1ν2

ρ2ν1 − ρ1ν ρ2ν1 + ρ1ν2

]

and

E
−1
2 E1 =

1

2ρ2ν
2

[

ρ1ν
2 + ρ2ν1 ρ1ν2 − ρ2ν1

ρ1ν
2 − ρ2ν1 ρ1ν2 + ρ2ν1

]

The initial step is to compute the T̂D and R̂D by starting at the bottom and mov-

ing upward, and also the T̂U and R̂U by starting at the top and moving down. These

are presented in Table 2.1.

Trapped modes

We immediately see that (1.10) is true, and that the condition for the existence

of trapped models is

I − R̂
j

D
R̂

j

U
= 1 +

1 − P

1 + P
e−2ν1H = 0 (2.1)

where we use P = ρ1ν
2/ρ2ν

1 as in Chapter ??. The zeros of this function are the

same as the poles of (??). After determining the (c, f ) pair that satisfies this equa-

tion, the next step it to compute the eigenfunction B as a function of depth. This is

done by first defining the C
j

U
and C

j

D
for each layer, and then using (1.3). Since the

solution of the trapped mode eigenfunction problem is invariant to multiplying the

eigenfunctions by the same scale, we will start at the top of the layer stack with an

arbitrary value for C1
D

:

C
1
D = 1

C
1
U = R

1
DC

1
D =

(

1 − P

1 + P

)

e−ν
1(2H−Z).

Now use these with (1.3) for j = 1 and z = 0. For j = 1, z j−1 = 0 and z j = Z. Thus

[

U

T

]

z=0

=

[

E11e−ν1Z
C

1
D
+ E12C

1
D

E21e−ν1Z
C

1
D
+ E22C

1
D

]

=















ν1
(

1−P
1+P

)

e−2ν1H −ν1

−ρ1ω
2
(

1−P
1+P

)

e−2ν1H −ρ1ω
2















(2.2)

Recall that the boundary condition at z = 0 was that of a free surface. Assuming

that the (c, f ) pair satisfies both boundary conditions, then C1
U
= −1. and thus

[

U

T

]

z=0

[

−2ν1
0

]

(2.3)
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Now move to the next interface.

C
2
D = T

1
DC

1
D = e−ν1Z

C
2
U = R

2
DC

2
D =

(

1 − P

1 + P

)

e−ν1(2H−h)

from which
[

U

T

]

z=Z

=

[

E11e−ν1(h−Z)
C

2
D
+ E12C

2
D

E21e−ν1(h−Z)
C

2
D
+ E22C

2
D

]

=















ν1
(

1−P
1+P

)

e−ν1(2H−Z) −ν1e−ν1Z

−ρ1ω
2
(

1−P
1+P

)

e−ν12H−Z −ρ1ω
2e−ν1Z















=

[

−2ν1 cosh ν1Z

2ρ1ω
2 sinh ν1Z

]

(2.4)

with the last being valid if the (c, f ) pair satisfies the boundary conditions.

If continued, this processing sequence would permit the determination of B(H).

There are two ways to obtain B(H). The first is to evaluate (??) at the bottom of

layer 3. First define

C
3
D = T

2
DC

2
D = e−ν1h

C
3
U = R

3
DC

3
D =

(

1 − P

1 + P

)

e−ν1(H)

in which case the relation would be
[

U

T

]

z=H

=

[

E11C
3
D
+ E12e−ν1(H−h)

C
3
D

E21C
3
D
+ E22e−ν1(H−h)

C
3
D

]

(2.5)

=

[

−2ν1 cosh ν1H

−2ρ1ω
2 sinh ν1H

]

(2.6)

(2.7)

The other method would be to extend the model by adding one more layer with

the parameters of the halfspace. The advantage of this is that the same procedure

is used to determine the stress-displacement at the top of each layer.

The selected value of C
1
D

was arbitrary. It is often convenient to normalize the

B’s such that Uz(0) = 1. If we use the propagator matrices of (??), we can write
[

U

T

]

z=0

=

[

1

0

] [

U

T

]

z=Z≤H

=

[

cosh ν1z

−ρ1ω
2 sinh ν1z/ν1z

]

As noted in Chapter ??, the eigenfunctions are required at the source and receiver

depths in order to make synthetics by model superposition. To compute the group
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Table 2.1 Generalized reflection and transmission coefficients

Bottom-up Top-Down

a = E
−1
1

E2 b = I

T̂
3
D

not used T̂
1
U

not used

R̂
3
D
=
ρ2ν1−ρ1ν2
ρ2ν1+ρ1ν2

e−ν1(H−h)
R̂

1
U
= −e−ν1(Z)

· · · · · · · · · · · ·

E = I F = I

T̂
2
D
= e−ν1(h−Z)

T̂
2
U
= e−ν1(h−Z)

R̂
2
D
=
ρ2ν1−ρ1ν2
ρ2ν1+ρ1ν2

e−ν1(2H−h−Z)
R̂

2
U
= −e−ν1(h+Z)

· · · · · · · · · · · ·

E = I F = I

T̂
1
D
= e−ν1Z

T̂
3
U
= e−2ν1(H−h)

R̂
1
D
=
ρ2ν1−ρ1ν2
ρ2ν1+ρ1ν2

e−ν1(2H−Z)
R̂

3
U
= −e−ν1(H+h)

· · · · · · · · · · · ·

velocity or partial derivatives of the phase velocity, integrals of the eigenfunctions

are required.A stable way of evaluating the required integrals was discussed in §??

in the context of the propagator matrices.

Assuming that the model consists of layers with constant density and velocity,

the variational techniques require the evaluation of integrals of the form

∫

U2
z dz

∫

(dU

dz

)2
dz

∫

U
(dU

dz

)

dz

Upper halfspace z < 0:

∫ 0

−∞

U2dz = (EN)2
11(KU

0 )2/2ν0

∫ 0

−∞

(

dU

dz

)2

dz = ν20(EN)2
11(KD

0 )2/2ν0

In this expression, the KU
0

is obtained from the definition [KU
0
,KD

0
]T = E−1

0
B(0).
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Lower halfspace: z > zN−1:

∫ ∞

zN−1

U2dz = (EN)2
21(KD

N )2/2νN

∫ ∞

zN−1

(

dU

dz

)2

dz = ν2N(EN)2
21(KD

N )2/2νN

In this expression, the KD
N

is obtained from the definition [KU
N
,KD

N
]T = E−1

N
B(zN−1).

Layers: z j−1 ≤ z ≤ z j

∫ z j

z j−1

U2dz = (E j)
2
11C

j

U

2[

1 − e−2ν jd j

]

/2ν j

+ 2(E j)11(E j)12C
j

U
C

j

D
d je
−ν jd j

+ (E j)
2
12(C

j

D
)2
[

1 − e−2ν jd j ]/2ν j

∫ z j

z j−1

(

dU

dz

)2

dz = (E j)
2
11C

j

U

2[

1 − e−2ν jd j

]

ν j/2

− 2(E j)11(E j)12C
j

U
C

j

D
d je
−ν jd jν2j

+ (E j)
2
12(C

j

D
)2
[

1 − e−2ν jd j ]ν j/2

chek this nus

We see that casting of the problem in terms of the CU and CD permits a simple,

stable determination of the integrals required for determination of the Lagrangian

for a trapped mode problem. These same integrals are used for the determination of

the group velocity and phase velocity partials with respect to medium parameters.

Embedded source

First consider the displacement above the source. For this model, the source is at

the boundary between layers 2 and 3, which is at a depth h in the model. Just above

the source we have

C−U = C2
U =

[

1 − e−ν
1(H−h)

R̂
3
De−ν1(h−Z)

R̂
2
U

] [

e−ν1(H−h)
R̂

3
D Σ

D − ΣU
]

=
2π

ν1

(1 − P)e−ν1(2H−2h) + (1 + P)

(1 − P)e−2ν1H + (1 + P)

and

C2
D = R

2
UC

2
U = −e−ν1(h+Z)C2

U

Now placing these into the expression for the displacement and stress at the top ofmention that in
this scalar case the
exponentials could

be combined, but
for P-SV the

actual order is
important since

the terms will then
all be 2x2 matrices
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the layer 2, will give the solution for Z < h:

[

Uz

Tz

]

=

[

ν1 −ν1

−ρ1ω
2 ρ1ω

2

] [

e−ν1(h−Z) 0

0 1

] [

C2
U

−e−ν1(h+Z)C2
U

]

=

[

2ν1e−ν1h cosh(ν1Z)

−2ρ1ω
2e−ν1h sinh(ν1Z)

]

C
2
U

=

[

2ν1 cosh(ν1Z)

−2ρ1ω
2 sinh(ν1Z)

]

2π

ν1

cosh ν1(H − h) + P sinh ν1(H − h)

cosh ν1H + P sinh ν1H

The Tz is the same as the t of §??.

To obtain the solution at the top of layer 1, we use

C1
U = T 2

UC2
U C1

D = R1
UC1

U

from which
[

Uz

Tz

]

=

[

ν1 −ν1

−ρ1ω
2 ρ1ω

2

] [

e−ν1Z 0

0 1

] [

e−ν1(h−Z)C2
U

−e−ν1(h)C2
U

]

=

[

2ν1e−ν1h

0

]

C
2
U

=

[

2ν1

0

]

2π

ν1

cosh ν1(H − h) + P sinh ν1(H − h)

cosh ν1H + P sinh ν1H

Although this could also have been obtained by setting z = Z in the previous

solution, this example illustrates the stops to obtain the solution in the region above

the source for multi-layered media.

Below the source we must use the C+
D

.

C+D = C3
D =

[

1 − e−ν1(h−Z)
R̂

2
Ue−ν1(H−h)

R̂
3
D

] [

ΣD
− e−ν1(H−h)

R̂
2
U Σ

U
]

= (1 + P)
2π

ν1

1 − e−2ν1h

(1 − P)e−2ν1H + (1 + P)

and

C3
U = R

3
DC

3
D =

1 − P

1 + P
e−ν1(H−h)C3

D

The solution at the top of layer 3, just beneath the source, is

[

Uz

Tz

]

h+

=

[

ν1 −ν1

−ρ1ω
2 ρ1ω

2

] [

e−ν1(H−h) 0

0 1

] [

1−P
1+P

e−ν1(H−h)

1

]

C3
D

= −

[

ν1(P cosh ν1(H − h) + sinh ν1(H − h))

ρ1ω
2(P cosh ν1(H − h) + sinh ν1(H − h))

]

2π

ν1

sinh ν1h

cosh ν1H + P sinh ν1H
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while the solution at the base of layer 3, e.g., z = H, is
[

Uz

Tz

]

H

=

[

ν1 −ν1

−ρ1ω
2 ρ1ω

2

] [

1 0

0 e−ν1(H−h)

] [

1−P
1+P

e−ν1(H−h)

1

]

C3
D

= −

[

2Pν1

2ρ1ω
2

]

2π

ν1

sinh ν1h

cosh ν1H + P sinh ν1H

If the model had consisted of more layers beneath the source, then given C3
D

and

T 3
D

, one would compute

C4
D = T 3

DC3
D C4

U = R4
DC4

D

with (1.3).
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