The intersection of the two cones of the pool forms the focal plane. The plane of the focal plane is parallel to the plane of the incident ray. The focal plane is perpendicular to the axis of the cone. The focal length is the distance from the vertex of the cone to the focal point. The focal length is determined by the radius of the cone and the distance from the vertex to the focal point. The focal length is the same for all cones of the same size.

Diagram:
- **Focal Plane:** The intersection of the two cones of the pool forms the focal plane.
- **Focal Length:** The focal length is the distance from the vertex of the cone to the focal point.
- **Parallel Plane:** The plane of the focal plane is parallel to the plane of the incident ray.
\[\frac{\phi}{(\phi H_0)} = \frac{E}{F} \]

where

\[\phi = \frac{\mu_m}{(\epsilon + \mu_m)} \]

and

\[\phi \cos (\alpha + \beta) = \frac{\mu_m}{(\epsilon + \mu_m)} \]

For the parameter case shown in Figure 1, the following expression is obtained:

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above, yielding the expression when

\[\phi = \frac{\mu_m}{(\epsilon + \mu_m)} \]

and

\[\phi \cos (\alpha + \beta) = \frac{\mu_m}{(\epsilon + \mu_m)} \]

The SH expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]

The AWSL expression for the AWSL is determined as above by the expression

\[\psi = \frac{\phi}{(\phi H_0)} \]
REFERENCES

FOCAL MEASUREMENT DEFINITIONS