Seismic Moment Tensor Inversion Using 3D Velocity Model and Its Application to the 2013 Lushan Earthquake Sequence

Lupei Zhu
1. Dept. Earth and Atmospheric Sciences, SLU, USA
2. Inst. of Geophysics and Geomatics, CUGW, China

Acknowledgment:

- Xiaofeng Zhou and Xingchen Wang, Institute of Geophysics, CEA.
- China Natl. Special Fund for Earthquake Sci. Res. in Public Interest (201308011).
- NNSFC Grant 42374060.
- NSF grant EAS-1249701.
Outline

1. Moment tensor inversion for a general seismic source.
3. Application to southern California earthquakes.
4. Application to the 2013 Ms 7.0 Lushan earthquake sequence.
5. Conclusions
For a point seismic source of impulse source time function,

\[u(t) = M_{ij} G_{ij}(t), \quad (1) \]

where \(M \) is the source moment tensor (symmetric, 6 independent components) and \(G(t) \) is the Green’s function.
Eq. (1) is a linear function of M_{ij} when the Green’s functions are known. But imperfect velocity model and source location/origin time introduce a unknown time shift Δt,

$$u(t) = M_{ij} G_{ij} (t - \Delta t),$$

which makes the moment tensor inversion non-linear.
Parameterization of moment tensor

\[M_{ij} = M_0 D_{ij}, \quad (|D| = \sqrt{2}) \] \hspace{1cm} (3)

\[D_{ij} = \zeta D_{ij}^{\text{ISO}} + \sqrt{1 - \zeta^2} \left(\sqrt{1 - \chi^2} D_{ij}^{\text{DC}} + \chi D_{ij}^{\text{CLVD}} \right), \] \hspace{1cm} (4)

\[D_{ij}^{\text{ISO}} = \sqrt{\frac{2}{3}} \delta_{ij}, \] \hspace{1cm} (5)

\[D_{ij}^{\text{DC}} = n_i v_j + v_i n_j, \] \hspace{1cm} (6)

\[D_{ij}^{\text{CLVD}} = \frac{1}{\sqrt{3}} (2b_i b_j - v_i v_j - n_i n_j), \] \hspace{1cm} (7)

where \(M_0 \) is the scalar moment, \(\hat{n} \) is the fault normal vector (determined by the strike \(\phi \) and dip \(\delta \) of the fault plane), \(\hat{v} \) is the slip direction vector (determined by the rake \(\lambda \)), and \(|\zeta| \leq 1 \) and \(|\chi| \leq 1/2 \) are non-dimensional parameters quantifying the strength of isotropic and CLVD components, respectively.
gCAP3D uses a grid search to solve Eq. (2) for source parameters

\[\mathbf{m} = (\zeta, \chi, \phi, \delta, \lambda)^T. \]

(8)

For each possible set of source parameters, it first finds \(\Delta t \) by cross-correlating \(u(t) \) and \(s(t) = D_{ij} G_{ij}(t) \) and estimates the scalar moment,

\[M_0 = \frac{\|u\|}{\|s\|}. \]

(9)

It then calculates the waveform misfit \(e \) using the \(L_2 \) norm of the difference between observed and predicted waveform,

\[E = \sum_{i=1}^{N_s} \left(w^2 \left(\frac{r_i}{r_0} \right)^2 \left(e_i^{PnlZ} + e_i^{PnlR} \right) + \frac{r_i}{r_0} \left(e_i^{RaylZ} + e_i^{RaylR} + e_i^{Love} \right) \right), \]

(10)

\[e = \|u(t) - M_0 s(t - \Delta t)\|^2. \]

(11)
Zhen et al., 2013
Zhen et al., 2013
• EMOD3D code by R. Graves (1996).
• Staggered grid, 4th-order FD.
• $450 \times 450 \times 150$ km.
• Grid spacing 1 km, $f_{\text{max}}=0.4$ Hz.
• Use the reciprocity principle to reduce the number of FD runs.
• Takes ~ 4 Hrs. per station.
Raw Text

Event 2013

Model and Depth

geom_fix

FM 222 42 90 Mw 6.52 E 6.528e+01 590 ERR 2 1 2 ISO 0.28 0.05 CLVD -0.13 0.03

Variance reduction 71.4

Diagram

- **SMI**: 132.3/0.86, 0.40, 90, 0.40, 96, -1.10, 95, -1.10, 95, 1.00, 88
- **WCH**: 144.3/-1.01, 3.00, 87, 3.00, 92, 0.90, 95, 0.90, 85, 4.10, 89
- **HMS**: 159.5/0.19, 1.30, 85, 1.30, 90, 1.80, 95, 1.80, 94, -4.20, 35
- **MBI**: 169.9/1.28, 0.50, 95, 0.50, 97, 0.00, 93, 0.00, 94, -0.60, 92
- **JJS**: 170.4/0.77, 1.50, 71, 1.50, 71, 2.20, 89, 2.20, 62, -3.10, 51
- **YJJ**: 191.2/1.46, 0.30, 82, 0.30, 90, -1.50, 97, -1.50, 94, -1.20, 96
- **MEK**: 192.1/1.07, 2.00, 83, 2.00, 89, -1.00, 93, -1.00, 90, -0.60, 91
- **DFU**: 193.6/0.64, 1.30, 58, 1.30, 82, 0.00, 95, 0.00, 93, 2.00, 84
- **JLO**: 201.4/0.74, 0.50, 82, 0.50, 91, -1.10, 97, -1.10, 92, -0.80, 62

Ticks

- 50 s
Event 20130424133635 Model and Depth 3D_fix
FM 28 27 72 Mw 3.36 E 4.584e-08 433 ERR 2 4 10 ISO 0.00 0.00 CLVD 0.00 0.00
Variance reduction 84.1

<table>
<thead>
<tr>
<th>Station</th>
<th>Pnlz</th>
<th>Pnlr</th>
<th>Raylz</th>
<th>RaylSr</th>
<th>Love</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAX</td>
<td>13.3/-0.38</td>
<td>-0.50</td>
<td>94</td>
<td>-0.50</td>
<td>92</td>
</tr>
<tr>
<td>TQU</td>
<td>27.3/0.13</td>
<td>2.00</td>
<td>18</td>
<td>2.00</td>
<td>58</td>
</tr>
<tr>
<td>MDS</td>
<td>27.5/-0.29</td>
<td>-1.00</td>
<td>93</td>
<td>-1.00</td>
<td>96</td>
</tr>
<tr>
<td>EMS</td>
<td>94.6/-0.25</td>
<td>-0.90</td>
<td>92</td>
<td>-0.90</td>
<td>92</td>
</tr>
<tr>
<td>XJI</td>
<td>94.6/0.53</td>
<td>-2.10</td>
<td>88</td>
<td>-2.10</td>
<td>93</td>
</tr>
<tr>
<td>JYA</td>
<td>113.7/-0.17</td>
<td>-0.70</td>
<td>94</td>
<td>-0.70</td>
<td>94</td>
</tr>
<tr>
<td>YGD</td>
<td>116.1/-0.03</td>
<td>-0.90</td>
<td>91</td>
<td>-0.90</td>
<td>83</td>
</tr>
</tbody>
</table>

50 s
Conclusions

• We developed a method for determining moment tensors using 3D Greens functions.
• It uses grid search for the best source parameters that minimize waveform misfit.
• We applied the method to the 2013 Ms 7.0 Lushan earthquake sequence.
• We obtained 75 moment tensor solutions ranging from Mw 6.5 to 3.4.
• The mainshock is a reverse faulting on a plane dipping 40-47° to the NW.