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Abstract. An improved technique is proposed for spectral
analysis of an arbitrary function of the Moon/Sun/planet
coordinates tabulated over a long period of time. Expan-
sion of the function to Poisson series is made where the
amplitudes and arguments of the series’ terms are high-
degree time polynomials, as opposed to the classical
Fourier analysis where the terms’ amplitudes are con-
stants, and the arguments are linear functions of time.
This leads to an improvement in accuracy of the spectral
analysis of the functions over long-term intervals. The
technique is applied to produce a harmonic development
of the Earth tide-generating potential (TGP) which was
preliminarily calculated and tabulated over an interval of
2000 years centered at epoch J2000.0. (The latest NASA/
JPL long-term ephemerisDE/LE-406 has been used as the
source of the Moon, Sun and planet coordinates.) The
final development of the TGP, named KSM03, includes
some 27 000 terms of amplitudes down to the level of
1� 10�8 m2 s�2. The respective accuracy in calculation of
gravity tides at a mid-latitude station is 0.025/0.39 nGal
(the root-mean-square/maximum error) when compared
with a benchmark gravity tide series numerically com-
putedwith the use of themost accurate ephemerisDE-405
at every hour within the interval 1600–2200 (the complete
period of time covered by the ephemeris). It exceeds the
accuracy of any previously made harmonic development
of the TGP in the time domain by a factor of at least 3.
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1 Introduction

The task of harmonic development of the Earth tide
generating potential (TGP) has a long history. Doodson
(1921) first performed an accurate representation of the

TGP by harmonic series. Subsequent expansions were
done by Cartwright and Tayler (1971), Cartwright and
Edden (1973), Büllesfeld (1985), Xi (1987, 1989), and
Tamura (1987, 1995). The latest and to date most
accurate harmonic developments of the TGP have been
made by Hartmann and Wenzel (1994, 1995) and
Roosbeek (1996), who used quite different methods in
their studies. Roosbeek’s model of the TGP is built by
means of an analytical technique. He used analytical
series for spherical coordinates of the Moon from
ELP2000–85 theory (Chapront-Touzé and Chapront
1988) and those of the major planets from VSOP87
theory (Bretagnon and Francou 1988). Then, after some
transformation of the series he obtained the desired
harmonic series representing the TGP development. Such
an approach separates well terms of close frequencies in
the final expansion (but only as far as is done in the
original motion theories of the Moon and planets).
However, the accuracy of thismethod is obviously limited
by the accuracy of the bodies’ coordinates provided by
the analytical theories of planetary/lunar motion which
have a lower accuracy than numerical ephemerides of
DE-series by the Jet Propulsion Laboratory (JPL)/
National Aeronautics and Space Administration
(NASA) [the latter are recommended by the International
Earth Rotation Service (IERS) Conventions (McCarthy
and Petit 2003) for precise calculations]. Hartmann and
Wenzel (1994, 1995) chose another method for develop-
ing their model of the TGP. As a source of the Moon/
planet coordinates they used the then most accurate
numerical ephemeris DE-200 (Standish and Williams
1981). They calculated numerical values of relevant
functions of the attracting bodies’ coordinates contained
in the TGP formulation over a 300-year interval (1850–
2150) with a small sampling step and made a Fourier
analysis of the obtained data. A disadvantage of this
approach is the non-proper separation of close frequen-
cies whenmaking a Fourier analysis of data sampled over
a relatively short period of time. Nevertheless, Hartmann
and Wenzel were able to build an accurate harmonic
development of the TGP which was one of the best at the
time of their study.
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In our work we followed the latter approach. The
followingmajormodifications have been introduced byus
to further increase the accuracy of the TGP expansion.

1. We developed and used an improved technique of
spectral analysis to obtain expansions of the relevant
functions to Poisson series with the terms’ amplitudes
and arguments being high-degree polynomials of time
(as opposed to classical Fourier analysis where the
terms’ amplitudes are constants and the arguments
are linear functions of time).

2. The most up-to-date planetary and lunar ephemerides
DE/LE-405, -406 (Standish 1998a) were used.

3. In order to decrease the effect of close frequencies the
improved spectral analysis was done over a 2000-year
interval of time, 1000–3000.

As a result, we can reach an accuracy of the har-
monic development of the TGP in the time domain that
improves on the accuracy of any previously developed
model. Respective computation of gravity tides at a
mid-latitude station can be done at sub-nGal level and is
proven to be stable over the period 1600–2200 (the
complete time span covered by the ephemeris DE/LE-
405). This allows use of the present TGP development in
treatment of advanced gravimeter data in the future and
in high-accuracy prediction of Earth tides.

2 Formulation of TGP expansion problem

The classical representation of the Earth TGP gener-
ated by external attracting bodies (the Moon, Sun,
planets) at an arbitrary point P on the Earth’s surface at
epoch t is

V ðtÞ ¼
X

j

lj

X1

n¼2

rn

rnþ1
j ðtÞ

PnðcoswjðtÞÞ ð1Þ

where V is the value of the TGP at P ; r is the geocentric
distance to P ; lj and rj are, respectively, the gravi-
tational parameter and geocentric distance to the jth
body; wj is the angle between P and the jth body as
seen from the Earth’s center; and Pn is the Legendre
polynomial of degree n.

Equation (1) is expanded in our study as

V ðtÞ ¼
X1

n¼2

Xn

m¼0

r
RE

� �n
�Pnmðsinu0Þ CnmðtÞ cosmhðAÞðtÞ

h

þSnmðtÞ sinmhðAÞðtÞ
i

�
X1

n¼2

Xn

m¼0
VnmðtÞ ð2Þ

where

CnmðtÞ ¼
1

2nþ 1

X

j

lj

RE

RE

rjðtÞ

� �nþ1

� �Pnmðsin djðtÞÞ cosmaðAÞj ðtÞ ð3Þ

SnmðtÞ ¼
1

2nþ 1

X

j

lj

RE

RE

rjðtÞ

� �nþ1

� �Pnmðsin djðtÞÞ sinmaðAÞ
j
ðtÞ ð4Þ

and RE is the mean Earth equatorial radius; aðAÞj ðtÞ and
djðtÞ are, respectively, the instantaneous right ascension
and declination of the jth body referred to the true
geoequator of epoch t with an origin at point A—that
being the projection of the mean equinox of date (see
Fig. 1); hðAÞðtÞ is the local mean sidereal time at P
reckoned from the same point A—so that it is related to
the Earth fixed east longitude (from Greenwich) k of P
simply as

hðAÞðtÞ ¼ kþGMST ð5Þ

[GMST is Greenwich mean sidereal time defined by
the well-known expression by Aoki et al. (1982)]; u0 is
the geocentric latitude of the point P ; and �Pnm is the
normalized associated Legendre function related to the
unnormalized one (Pnm) as

�Pnm ¼ NnmPnm ð6Þ

where

Nnm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmð2nþ 1Þðn� mÞ!

ðnþ mÞ!

s

ð7Þ

and

dm ¼
1 if m ¼ 0
2 if m 6¼ 0

�
ð8Þ

The classical expression for the TGP [Eq. (1)] is
completed by some additional terms reflecting the main
effect of Earth’s flattening (Wilhelm 1983; Dahlen 1993;
Hartmann and Wenzel 1995; Roosbeek 1996), which can
be re-written as follows:

V flðtÞ ¼ r
RE

(
�P10ðsinu0ÞC10ðtÞ þ �P11ðsinu0Þ

� C11ðtÞ cos hðAÞðtÞ þ S11ðtÞ sin hðAÞðtÞ
h i)

ð9Þ

Fig. 1. The spherical coordinates used when developing the TGP
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where

C10ðtÞ ¼
ffiffiffiffiffi
15

7

r
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RE
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rjðtÞ

� �4

�P30ðsin djðtÞÞ ð10Þ
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S11ðtÞ ¼
ffiffiffiffiffi
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7
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RE
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� �4
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�J2 is the normalized value for the dynamical form factor
of the Earth ( �J2 ¼ J2=N20).

The coefficients CnmðtÞ and SnmðtÞ contain infor-
mation about instantaneous positions of the attracting
bodies at every epoch t at which we calculate the TGP
value V ðtÞ þ V flðtÞ. Angles aðAÞj ðtÞ and djðtÞ in Eqs. (3),
(4), and (10)–(12) are reckoned along and from the true
geoequator of the epoch t, so the relevant values for the
coefficients CnmðtÞ and SnmðtÞ fully take into account the
effects of both precision and nutation in obliquity. When
computing the TGP at a certain point P on the Earth’s
surface at epoch t we need to know just differences
hðAÞðtÞ � aðAÞj ðtÞ between the local sidereal time at P and
the right ascension of the jth attracting body. Because of
the choice for the origin point A (see Fig. 1), nutation in

longitude does not affect values for aðAÞj ðtÞ [and conse-
quently values for CnmðtÞ and SnmðtÞ]. Therefore, we do
not have to take into account nutation in longitude
when calculating hðAÞðtÞ as well, i.e. the GMST has to be
used in Eq. (5).

Having harmonic expansions for CnmðtÞ and SnmðtÞ we
can further calculate the time-dependent values of the
TGP at an arbitrary point Pðr;u0; kÞ on the Earth’s
surface by using the relations of Eqs. (2), (5), and (9). The
tidal acceleration along the Earth radius (or ‘the gravity
tide’) is obtained as the radial derivative of the TGP

gðtÞ � @ðV ðtÞ þ V flðtÞÞ
@r

¼
X1

n¼1

n
r

Xn

m¼0
VnmðtÞ þ

1

r
V flðtÞ

ð13Þ

In our work the coefficients CnmðtÞ and SnmðtÞ have been
expanded to precision Poisson series by an improved
method of spectral analysis made over 2000 years, 1000–
3000. A description of the method and the results
obtained are presented in the following sections.

3 Improved technique of spectral analysis

Let f ðtÞ be an arbitrary function tabulated by its
numerical values over an interval of time ½�T ; T � with
a small sampling step.

Over the same interval we will build an analytical
representation of the function by a finite h-order Poisson
series of the following form:

f ðtÞ �
XN

k¼1

(
Ac

k0 þ Ac
k1t þ � � � þ Ac

khth
� �

cosxkðtÞ

þ As
k0 þ As

k1t þ � � � þ As
khth

� �
sinxkðtÞ

)
ð14Þ

where Ac
k0;A

c
k1; . . . ;As

kh are constants and xkðtÞ are some
pre-defined arguments which are assumed to be q-degree
polynomials of an independent variable (e.g. of time)

xkðtÞ ¼ mkt þ mk2t2 þ � � � þ mkqtq ð15Þ

For this we find the projections of f ðtÞ on a basis
generated by functions

cklðtÞ � tl cosxkðtÞ; sklðtÞ � tl sinxkðtÞ
ðk ¼ 1; 2; . . . ; N ; l ¼ 0; 1; . . . ; hÞ ð16Þ

through numerical computation of the following scalar
products:

Ac
kl ¼ hf ; ckli �

1

2T

ZT

�T

f ðtÞtl cosxkðtÞvðtÞ dt ð17Þ

As
kl ¼ hf ; skli �

1

2T

ZT

�T

f ðtÞtl sinxkðtÞvðtÞ dt ð18Þ

by using the definition

hf ; gi � 1

2T

ZT

�T

f ðtÞ�gðtÞvðtÞdt ð19Þ

(�g is the complex conjugate to the g function); vðtÞ ¼
1þ cos p

T t is the Hanning filter chosen as the weight
function.

The proper choice of arguments xkðtÞ depends on the
specific task (e.g. they can be multipliers of Delaunay
arguments and/or planetary mean longitudes, etc.).
However, the basis functions ck1l1ðtÞ, sk1l1ðtÞ, ck2l2ðtÞ,
sk2l2ðtÞ, . . . are not usually orthogonal. So, we have to
perform an orthogonalization process over the expan-
sion coefficients in order to improve the quality of rep-
resentation of Eq. (14) and avoid superfluous terms. For
this procedure we used the algorithm developed by
S̆idlichovský and Nesvorný (1997). Equations (20)–(27)
present the algorithm which we have generalized as
indicated below.

Let f ðtÞ be a tabulated complex function and let
eif gi¼1;2; ... ;M be a set of M basis functions [in our study
equal to the complete set of cklðtÞ, sklðtÞ so that
M ¼ 2� N � ðhþ 1Þ]. The function f ðtÞ is developed on
the basis ef g as
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f ðtÞ ¼
XM

i¼1
AðMÞi ei þ fM ðtÞ ð20Þ

whereAðMÞi is a coefficient at ei after expanding f ðtÞoverM
basis functions, and fM ðtÞ, the difference between the
original function and its approximation by M terms,
proves to be minimal. Let us define the projections
Fi �< fi�1; ei > and Qij �< ei; ej >. The original algo-
rithm by Šidlichovský and Nesvorný (1997) employs a
certain normalized basis ef g where the latter scalar
product ðQijÞ is always a real-valued function. We here
expand their result to the case of an arbitrary non-
normalized basis ef gwhereQij can take complex values as
well.

Thus coefficients AðMÞi are iteratively calculated as
follows. At the first step

a11¼
1ffiffiffiffiffiffiffiffi
Q11

p ; Að1Þ1 ¼a211F1; f1ðtÞ¼ f0ðtÞ�Að1Þ1 e1 ð21Þ

where f0ðtÞ � f ðtÞ and aij are hereafter some calculated
complex constants.

At the mth step, for every j ¼ 1; 2; . . . ; m� 1 we
compute the following complex coefficients:

BðmÞj ¼ �
Xj

s¼1
�ajsQms ð22Þ

amm ¼ Qmm �
Xm�1

s¼1

�BðmÞs BðmÞs

 !�1=2
ð23Þ

(by construction the coefficient amm take on a real value
for any m)

amj ¼ amm

Xm�1

s¼j

BðmÞs asj ð24Þ

AðmÞm ¼ a2mmFm ð25Þ

AðmÞj ¼ Aðm�1Þj þ ammamjFm ð26Þ

fmðtÞ ¼ fm�1ðtÞ � ammFm

Xm

i¼1
amiei ð27Þ

where �ajs and �BðmÞs are complex conjugate values of the
relevant quantities.

For the selected basis of Eq. (16), the projections
Fi �< fi�1; ei > are numerically calculated according to
Eqs. (17) and (18). The values for scalar products of the
basis functions Qij �< ei; ej > can be found analytically
through the following steps.
Step 1. As far as trigonometric functions can be
represented in exponential form, we shall further deal
with definite integrals of the form

InðmÞ �
1

2T

ZT

�T

tneimtð1þ cos
p
T

tÞ dt

¼ Ia
n ðmÞ þ Ib

n ðmÞ þ Ic
nðmÞ ð28Þ

where i �
ffiffiffiffiffiffiffi
�1
p

and

Ia
n ðmÞ �

1

2T

ZT

�T

tneimt dt ð29Þ

Ib
n ðmÞ �

1

4T

ZT

�T

tneiðmþp
TÞt dt ð30Þ

Ic
nðmÞ �

1

4T

ZT

�T

tneiðm�p
TÞt dt ð31Þ

It is easy to find

Ia
n ð0Þ ¼ 2Ib

n �
p
T

� �
¼ 2Ic

n
p
T

� �
¼

0 if n is odd
T n

nþ1 if n is even

(
ð32Þ

Otherwise, if n ¼ 0

Ia
0 ðmÞ ¼

sinðmT Þ
mT

ð33Þ

Ib
0 ðmÞ ¼ �

1

2

sinðmT Þ
mT þ p

ð34Þ

Ic
0ðmÞ ¼ �

1

2

sinðmT Þ
mT � p

ð35Þ

If n � 1 we calculate the integrals iteratively

Ia
n ðmÞ ¼

i
mT

TnIa
n�1 � T nwðmÞ

	 

ð36Þ

Ib
n ðmÞ ¼

i
mT þ p

TnIb
n�1 þ

1

2
T nwðmÞ

� �
ð37Þ

Ic
nðmÞ ¼

i
mT � p

TnIc
n�1 þ

1

2
T nwðmÞ

� �
ð38Þ

where

wðmÞ ¼ cos mT if n is odd
i sin mT if n is even

n
ð39Þ

Step 2. We partially expand the exponential function of
the argument ofEq. (15) to apower series of t by assuming
smallness of the second and further items in the right-hand
side of Eq. (15) with respect to the first term. This task can
easily be performed by means of a computer algebra
system (we have used theMAPLEV program package by
WaterlooMaple Software). The result is as follows (where
the maximal degree of the polynomial argument, q, has
been restricted to a value of 4)

ei mtþm2t2þm3t3þm4t4ð Þ

¼ eimt

�
1þ im2t2 þ im3t3:

þ im4 �
1

2
m22

� �
t4 � m2m3t5 þ � � �

�
ð40Þ
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In our study we obtain an expansion [Eq. (40)] up to
terms proportional to t24. Then we define a new integral
function of a polynomial argument xðtÞ as

JnðxÞ �
1

2T

ZT

�T

tnei mtþm2t2þm3t3þm4t4ð Þ 1þ cos
p
T

t
� �

dt ð41Þ

By combining Eqs. (28) and (40) we can write

JnðxÞ ¼ InðmÞ þ im2Inþ2ðmÞ þ im3Inþ3ðmÞ

þ im4 �
1

2
m22

� �
Inþ4ðmÞ � m2m3Inþ5ðmÞ þ � � � ð42Þ

Step 3. We expand trigonometric functions to exponen-
tial ones, and then the required scalar products can be
calculated as

< ck1l1 ; sk2l2 >

¼ 1

2T

ZT

�T

tl1þl2 eixk1 þ e�ixk1

2

� �

� eixk2 � e�ixk2

2i

� �
1þ cos

p
T

t
� �

dt

¼ 1

4i

�
� Jl1þl2 xk1 � xk2ð Þ � Jl1þl2 �xk1 � xk2ð Þ

þ Jl1þl2 xk1 þ xk2ð Þ þ Jl1þl2 �xk1 þ xk2ð Þ


ð43Þ

and analogously

< sk1l1 ; ck2l2 >

¼ 1

4i

�
Jl1þl2 xk1 � xk2ð Þ � Jl1þl2 �xk1 � xk2ð Þ

þ Jl1þl2 xk1 þ xk2ð Þ � Jl1þl2 �xk1 þ xk2ð Þ


ð44Þ

< sk1l1 ; sk2l2 >

¼ 1

4

�
Jl1þl2 xk1 � xk2ð Þ � Jl1þl2 �xk1 � xk2ð Þ

� Jl1þl2 xk1 þ xk2ð Þ þ Jl1þl2 �xk1 þ xk2ð Þ


ð45Þ

< ck1l1 ; ck2l2 >

¼ 1

4

�
Jl1þl2 xk1 � xk2ð Þ þ Jl1þl2 �xk1 � xk2ð Þ

þ Jl1þl2 xk1 þ xk2ð Þ þ Jl1þl2 �xk1 þ xk2ð Þ


ð46Þ

This is the technique of spectral analysis allowing
expansion of an arbitrary tabulated function of the
Moon/Sun/planet coordinates to Poisson series, with the
arguments being high-degree polynomials of time.

4 Harmonic development of the TGP by the new technique

The formalism described in the previous section has
been applied to accurate expansion of the Earth TGP
over 2000 years, 1000–3000. At every six hours within
that interval of time we calculated numerical values
for the coefficients Cnm and Snm of the TGP expansion
according to Eqs. (3), (4), and (10)–(12). The latest
JPL long-term ephemeris DE/LE-406 was employed as
a source of the Moon, Sun and planet coordinates.
Note that positions of the attracting bodies are
calculated by us not in a rapidly rotating Earth-fixed
coordinate system [as is done, for example, in the
study of Hartmann and Wenzel (1995)] but in a
coordinate system that rotates much more slowly with
time (see Fig. 1). This allows separation of high-
frequency terms in the TGP expansion due to the
Earth’s rotation from the terms just caused by the
Moon, Sun and planet motion. It has been proven
that the sampling step of six hours’ duration is small
enough for detecting all essential waves in the
spectrum of Cnm and Snm.

When calculating the coefficients we used values for
the planetary gravitational parameters from Standish
(1998a) and values for �J2 and RE from the IERS Con-
ventions (McCarthy and Petit 2003). [The value for the
latter constant, which further has to be used in Eqs. (2)
and (9) along with expansions of the coefficients, is
6378136.3 m.]

The arguments of Eq. (15) in the expansion of
Eq. (14) were selected as follows. From Simon et al.
(1994) we took complete fourth-order polynomial
expressions for mean longitude of the ascending node
of the Moon X, for Delaunay variables D; l0; l, and F
(mean elongation of the Moon from the Sun, mean
anomaly of the Sun, mean anomaly of the Moon,
and mean longitude of the Moon subtracted by X,
respectively), and for mean longitudes of Venus,
Jupiter, Mars, Saturn, and Mercury. [As Hartmann
and Wenzel (1994) showed, the attraction of other
planets is negligible when calculating the TGP.] The
set of arguments of the Moon, Sun and planet motion
referred to the mean ecliptic and equinox of date was
chosen using the latest value of the precession con-
stant. Then we preliminarily evaluated a spectrum of
the tabulated numerical values of Cnm and Snm at
numerous combinations of multipliers of the argu-
ments’ frequencies. For that a classical Fourier anal-
ysis (fast Fourier transform, FFT) of the data arrays
at frequencies specially defined by the FFT was first
made. Then the approximate amplitude of a spec-
trum’s wave at every combination of multipliers of the
frequencies (cut to linear functions at this stage) was
found through interpolating the results of FFT. After
that, for all waves in the Cnm and Snm spectrum which
had the preliminary amplitude exceeding or equal to a
pre-set minimal level (10�8 m2 s�2 in our study) we
carried out the improved harmonic analysis of the
original data arrays by using Eqs. (20)–(46) in order to
account for the high-degree polynomial form [Eq. (15)]
of the arguments (where q is equal to 4 as the maxi-
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mum degree of polynomials for Delaunay variables).
The maximal order h of the polynomials representing
amplitudes in Poisson series [Eq. (14)] for the Earth
TGP is equal to 2. Numerical tests proved that further
increasing the order h does not improve the solution
quality at a limited interval of time, 1000–3000. Thus,
the amplitudes of coefficients in our development are
not constants, but slowly changing variables described
by second-order time polynomials. Such a form of
representation of terms’ amplitudes and arguments is
very similar to that used in modern analytical models
of lunar/planetary motion and nutation.

The final expansions for coefficients Cnm and Snm
include waves of amplitude not less than 10�8 m2 s�2

only. The number N of such terms in the development of
Eq. (14) for every coefficient Cnm and Snm of degree n and
order m is presented in Table 1. The total number of
waves included in the final spectrum of the TGP, named
KSM03, is the sum of all N and equal to 26 753.

Convergence of the series for every coefficient was
checked through evaluation of the maximum and RMS
values for approximation error fM ðtÞ in Eq. (20) over the
entire time interval, 1000–3000. At every increment in
number of included waves the error was calculated as
the difference between the coefficient value f ðtÞ (at every
tabulated epoch) and its approximation given by the
current series of M terms. Table 2 shows the final
maximum errors of the harmonic development of coef-
ficients Cnm and Snm.

The major terms of the expansion are presented in
Table 3.

The complete set of coefficients of KSM03 develop-
ment of the Earth TGP can be found at http://
lnfm1.sai.msu.ru/neb/images/ksm/tgp/coeff.zip. (The
description of the data format is done in file http://
lnfm1.sai.msu.ru/neb/images/ksm/tgp/readme.pdf)

5 Comparisons and tests of KSM03

We made a comparison between the KSM03 series
and the most recent developments of the Earth TGP:
HW95 (Hartmann and Wenzel 1995) and RATGP95
(Roosbeek 1996). It should be remembered that, unlike
the latter expansions, wave frequencies of KSM03 series
are done not in an Earth-fixed reference frame but in a
celestial reference frame defined by the true geoequator
of date and the projection of the mean equinox of date
as the origin of right ascensions (Fig. 1). The major
advantage of such a choice for the series format is that it
explicitly separates two different time arguments to be
used in calculating the wave frequencies in an Earth-
fixed frame. One of these is Teph, the time argument
for JPL planetary/lunar ephemerides (Standish 1998b),
which is close to Barycentric Dynamical Time (TDB). It
is used when calculating the components of the wave
frequencies caused by the Moon, Sun and planet
motion, and is exactly the time argument in KSM03
series for coefficients CnmðtÞ and SnmðtÞ in Eqs. (3), (4),
and (10–12). The second time argument is UT1, which is
used for calculating another component of the final
frequencies—the sidereal time (or Earth rotation) rate
(Aoki et al. 1982). In our expansion of the TGP the
latter time argument is used in Eq. (5) only. The UT1
time scale is much less stable than Teph, and UT1 time is
difficult to predict for long to sufficient accuracy—so it is
preferable when coefficients CnmðtÞ and SnmðtÞ are both
calculated and expanded without any use of that time
argument. When calculating the TGP and gravity tide at
a certain epoch the relevant value for UT1 can be taken
from, for example, IERS publications (or determined
from observations) and used in Eq. (5) for calculating
just terms mhðAÞ in Eq. (2) and (9).

However, for the purpose of comparison with the
previous TGP developments in the frequency domain
the major waves from KSM03 expansion were re-cal-
culated to an Earth-fixed reference frame. (The Earth
rotation rate was assumed to be uniform.) Table 4
gives values for the amplitudes of the principal waves
obtained in HW95, RATGP95, and KSM03 develop-
ments. The wave frequencies shown in the table are
linear combinations of frequencies of Doodson vari-
ables: s mean local lunar time; s mean lunar longitude;
h mean solar longitude; p mean longitude of lunar
perigee; N 0 negative mean longitude of the lunar
ascending node; and ps mean longitude of solar
perigee.

Table 1. Number of terms in expansion of the Earth TGP coeffi-
cients Cnm/Snm

n m

0 1 2 3 4 5 6

1 111/- 107/103
2 3181/- 3293/3689 3862/3632
3 780/- 791/819 937/884 862/899
4 233/- 242/215 288/259 276/296 238/230
5 36/- 38/39 48/44 50/52 53/52 45/45
6 1/- 1/1 2/1 2/2 2/2 3/3 2/2

Table 2. Maximum approxima-
tion error for Cnm/Snm coeffi-
cients over the time interval
1000–3000 [m2 s)2 � 105]

n m

0 1 2 3 4 5 6

1 0.027/- 0.030/0.034
2 1.041/- 0.936/1.155 1.437/1.219
3 0.145/- 0.192/0.177 0.193/0.192 0.216/0.191
4 0.044/- 0.059/0.048 0.055/0.059 0.070 /0.064 0.060/0.060
5 0.015/- 0.018/0.016 0.016 /0.015 0.018/0.017 0.020/0.021 0.016/0.017
6 0.003/- 0.004/0.004 0.003/0.004 0.004/0.004 0.004/0.004 0.003/0.004 0.004/0.004
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Figure 2 shows differences between amplitudes of the
major waves in the three developments of the TGP.

As our analysis shows, the main differences in
amplitudes of the major waves in HW95, RATGP95,
and KSM03 arise from their either aliasing with or
separating from other small waves of very close
frequencies (differing by �2 _ps). However, if we merge
the waves of such close frequencies, the amplitudes
of combined waves will be almost identical in the
three developments under comparison. Dehant and
Bretagnon (1998) also strongly recommend merging the
terms of frequencies differing by ±2 _ps in the Earth TGP
developments and prove this procedure only leads to a
polynomial form of the combined terms’ amplitudes.
(This is what KSM03 development has: the terms of
such close frequencies are merged and the terms’ am-
plitudes are second-degree time polynomials). Aliasing
or separating terms of frequency ps does not change the
result of calculation of the Earth tides (Dehant 1997),
although it can be important in certain other applica-
tions, where a preference can be given to an analytical
solution, such as RATGP95. At the same time, the latter
does not include many of the terms of small amplitudes
presented in both HW95 and KSM03.

In the time domain the accuracy of KSM03 expan-
sion of the Earth TGP has been checked by computa-
tion of the gravity tide values [Eq. (13)] at a
mid-latitude station. For this we choose the Black Forest
Observatory (BFO) Schiltach (r ¼ 6 366 836:9m,
u ¼ 48:3306	N, k ¼ 8:3300	E) at which Hartmann and
Wenzel (1995) and Roosbeek (1996) also computed
the tidal gravity by using their expansions of the
TGP. First, we calculated the total tidal gravity at that
station by means of strict expressions of Eqs. (2)–(4) and
(9)–(13) where the Moon, Sun and planet spherical
coordinates were computed using the most precise JPL
ephemeris DE/LE-405. The gravity tides at BFO were

calculated at every hour within the whole time span
covered by that ephemeris, 1600–2200. Then we calcu-
lated the gravity tides at the same point and at the
same set of epochs by using KSM03 expansion of
the TGP and compared the results with the exact
values. The maximal deviation between the two sets of
data at any epoch within the whole time span of
six hundred years’ length does not exceed 0.39 nGal
(1 nGal¼ 10�11 m s�2). The corresponding RMS differ-
ence between the data over the same interval is less than
0.025 nGal.

Figure 3 shows how the accuracy of calculation of the
gravity tide at BFO depends on the number of terms
taken from KSM03 series. It is also interesting to esti-
mate how much KSM03 series can be truncated in order
to ensure the accuracy of both RATGP95 and HW95
solution (approximately, because KSM03 series have a
different format). Thus, the maximum residual of
1.23 nGal (the accuracy of HW95, which includes 12 935
terms) is reached when taking 12 770 terms from
KSM03, and the maximum residual of 5 nGal (obtained
in RATGP95, 6499 terms) is ensured by some 5800
terms from KSM03. (Let us remember that residuals in
KSM03 solution are estimated over the period 1600–
2200, while those in HW95 and RATGP95 are done
over 1850–2150 and 1987–1993, respectively.)

6 Conclusions

1. A new method of harmonic development of an
arbitrary function of the Moon/Sun/planet coordi-
nates tabulated over a long interval of time is pro-
posed. Unlike classical Fourier analysis, it allows us
to obtain the expansion directly as Poisson series
with terms of non-linear amplitudes and frequencies

Table 3. Amplitudes of the ma-
jor terms in KSM03 expansion
of the Earth TGP (m2/s)2)

Coefficient Multipliers of Period
(days)

Ac
0 Ac

1� 103

years
Ac
2� (103

years)2
As
0 As

1� 103

years
As
2� (103

years)2

W D l¢ l F

C22 2 0 0 0 2 13.7 0.2861 0.0003 0.0005 )1.2039 )0.0011 0.0001
S22 2 0 0 0 2 13.7 1.1994 0.0012 )0.0001 0.2850 0.0003 0.0005
C20 0 0 0 0 0 – )0.8696 )0.0028 0 0. 0. 0
S21 0 0 0 0 0 – 0.7206 )0.0031 0 0. 0. 0
C22 2 )2 0 0 2 182.6 )0.5377 )0.0005 0 0.2057 0.0002 0.0001
S22 2 )2 0 0 2 182.6 )0.2049 )0.0002 )0.0001 )0.5358 )0.0005 0.
C21 2 0 0 0 2 13.7 0.5200 )0.0027 )0.0001 0.1235 )0.0006 0.0002
S21 2 0 0 0 2 13.7 )0.1133 0.0005 )0.0002 0.4771 )0.0020 )0.0001
C21 2 )2 0 0 2 182.6 )0.0888 0.0005 0 )0.2323 0.0012 0
C22 2 0 0 1 2 9.1 )0.2018 )0.0002 )0.0001 0.1241 0.0001 )0.0001
S22 2 0 0 1 2 9.1 )0.1237 )0.0001 0.0001 )0.2010 )0.0002 )0.0001
S21 2 )2 0 0 2 182.6 0.2134 )0.0009 )0.0001 )0.0815 0.0005 0
C20 2 0 0 0 2 13.7 )0.0426 0.0004 )0.0001 0.1791 )0.0019 0
C22 0 0 0 0 0 – 0.1562 )0.0016 0. 0 0. 0.
C21 1 0 0 0 0 )6798.4 )0.0917 )0.0001 0 )0.0643 0.0001 0
C21 1 0 0 0 2 13.6 )0.0829 )0.0001 0 0.0735 0.0001 0
C21 2 0 0 1 2 9.1 )0.0536 0.0003 0.0001 )0.0872 0.0005 0
C20 0 0 0 1 0 27.6 0.0687 0.0002 0 0.0688 0.0002 0
S21 2 0 0 1 2 9.1 0.0800 )0.0003 0 )0.0499 0.0002 0.0001
C20 2 )2 0 0 2 182.6 0.0797 )0.0008 0.0001 )0.0306 0.0001 0
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(i.e. in the form that the modern analytical theories
of lunar/planetary motion and nutation models
have).

2. The method is applied to produce a new har-
monic development of the Earth TGP over the
period 1000–3000 (KSM03 solution), including 26

753 terms of amplitudes down to the level of
1� 10�8 m2 s�2.

3. The accuracy of KSM03 in the frequency domain is
close to that of HW95 and RATGP95. Having
merged the terms of the close frequencies (differing by
± 2 _ps), we obtain amplitudes of combined waves that

Table 4. Comparison of the
principal waves in different
TGPs in Earth-fixed reference
frame

Wave
name

Doodson
no.

Multipliers of Frequency
(degree/hour)

Wave amplitude (m2/s)2) as given by

s s h p N¢ ps HW95 RATGP95 KSM03

MS0 055, 555 0 0 0 0 0 0 0.00000000 0.8695488 0.8695776 0.8695547
055, 565 0 0 0 0 1 0 0.00220641 0.0771964 0.0771945 0.0771994

Sa 056, 554 0 0 1 0 0 )1 0.04106668 0.0136032 0.0136030 0.0142511a

Ssa 057, 555 0 0 2 0 0 0 0.08213728 0.0856534 0.0856663 0.0853588b

Msm 063, 655 0 1 )2 1 0 0 0.47152105 0.0185961 0.0185992 0.0185984
Mm 065, 455 0 1 0 )1 0 0 0.54437471 0.0972501 0.0972513 0.0972478

065, 555c 0 1 0 0 0 0 0.54901652 0.0103721 0.0103720 0.0103724
Msf 073, 555 0 2 )2 0 0 0 1.01589576 0.0161328 0.0161356 0.0161293
Mf 075, 555 0 2 0 0 0 0 1.09803304 0.1841040 0.1840650 0.1840904

075, 565 0 2 0 0 1 0 1.10023945 0.0763324 0.0763260 0.0763297
Mtm 085, 455 0 3 0 )1 0 0 1.64240775 0.0352501 0.0352416 0.0352463

085, 465 0 3 0 )1 1 0 1.64461415 0.0146096 0.0146100 0.0146104
2Q1 125, 755 1 )3 0 2 0 0 12.85428619 0.0129857 0.0129809 0.0129816
r1 127, 555 1 )3 2 0 0 0 12.92713984 0.0156593 0.0156655 0.0156662

135, 645 1 )2 0 1 )1 0 13.39645449 0.0185064 0.0185024 0.0185025
Q1 135, 655 1 )2 0 1 0 0 13.39866089 0.0981306 0.0980967 0.0981023
q1 137, 455 1 )2 2 )1 0 0 13.47151455 0.0186261 0.0186319 0.0186334

145, 545 1 )1 0 0 )1 0 13.94082919 0.0966889 0.0966709 0.0966697
O1 145, 555 1 )1 0 0 0 0 13.94303560 0.5125257 0.5123571 0.5123859

155, 455 1 0 0 )1 0 0 14.48741031 0.0144896 0.0144840 0.0144888
M1 155, 655 1 0 0 1 0 0 14.49669393 0.0402872 0.0402931 0.0402965
p1 162, 556 1 1 )3 0 0 1 14.91786468 0.0139377 0.0139380 0.0139413
P1 163, 555 1 1 )2 0 0 0 14.95893136 0.2384361 0.2384226 0.2385504d

165, 545 1 1 0 0 )1 0 15.03886223 0.0142682 0.0142594 0.0142694
K1 165, 555 1 1 0 0 0 0 15.04106864 0.7205113e 0.7206175 0.7206445

165, 565 1 1 0 0 1 0 15.04327505 0.0977846 0.0977803 0.0977636
/1 167, 555 1 1 2 0 0 0 15.12320592 0.0102599 0.0102607 0.0101341f

J1 175, 455 1 2 0 )1 0 0 15.58544335 0.0403017 0.0402939 0.0402959
OO1 185, 555 1 3 0 0 0 0 16.13910168 0.0220445 0.0220424 0.0220476

185, 565 1 3 0 0 1 0 16.14130809 0.0141252 0.0141215 0.0141231
2N2 235, 755 2 )2 0 2 0 0 27.89535483 0.0313070g 0.0312918 0.0312918
l2 237, 555 2 )2 2 0 0 0 27.96820848 0.0377851h 0.0377628 0.0377628
N2 245, 655 2 )1 0 1 0 0 28.43972953 0.2365822I 0.2364763 0.2364737
m2 247, 455 2 )1 2 )1 0 0 28.51258319 0.0449405j 0.0449157 0.0449156

255, 545 2 0 0 0 )1 0 28.98189783 0.0461038k 0.0460873 0.0460814
M2 255, 555 2 0 0 0 0 0 28.98410424 1.2356349l 1.2351162 1.2351037
L2 265, 455 2 1 0 )1 0 0 29.52847895 0.0349289 0.0349159 0.0349140
T2 272, 556 2 2 )3 0 0 1 29.95893332 0.0336007 0.0335945 0.0335941
S2 273, 555 2 2 )2 0 0 0 30.00000000 0.5748299m 0.5746685 0.5746403
K2 275, 555 2 2 0 0 0 0 30.08213728 0.1561924 0.1561929 0.1562081

275, 565 2 2 0 0 1 0 30.08434369 0.0465509 0.0465733 0.0465689
M3 355, 555c 3 0 0 0 0 0 43.47615636 0.0149687n 0.0149591 0.0149588

aResult of aliasing the wave with another wave of close frequency 056, 556 (+2ps)
bResult of aliasing the wave with another wave of close frequency 057, 553 ()2ps)
cFor this wave the degree n of the spherical harmonic development is 3
dResult of aliasing the wave with another wave of close frequency 163, 557 (+2ps)
eEffect of separating the wave from another wave of close frequency 165, 553 ()2ps)
fResult of aliasing the wave with another wave of close frequency 167, 553 ()2ps)
gEffect of separating the wave from another wave of close frequency 235, 757 (+2ps)
hEffect of separating the wave from another wave of close frequency 237, 557 (+2ps)
iEffect of separating the wave from another wave of close frequency 245, 657 (+2ps)
jEffect of separating the wave from another wave of close frequency 247, 457 (+2ps)
kEffect of separating the wave from another wave of close frequency 255, 547 (+2ps)
lEffect of separating the wave from another wave of close frequency 255, 557 (+2ps)
mEffect of separating the wave from another wave of close frequency 273, 557 (+2ps)
nEffect of separating the wave from another wave of close frequency 355, 557 (+2ps)
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are almost identical in all three developments. Present
analytical expansions of the TGP (like RATGP95) do
not include many of the waves of small amplitudes
presented in both HW95 and KSM03.

4. The accuracy of KSM03 in the time domain is esti-
mated to be 0.025/0.39 nGal (the RMS/maximum
error) when calculating the gravity tides at a mid-
latitude station over 600 years, 1600–2200. It is better,
in the time domain, than the respective accuracy of
any TGP development made previously by a factor of
at least 3, and is valid over a twice longer interval of
time.
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