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Abstract 

The solid Earth crust is deformed by atmospheric pressure variations due to periodic and 

aperiodic loading. When barometric admittance is determined the local, regional or global 

loading effect can be calculated depending on the available pressure data. The effect of 

horizontally moving weather systems across the extensometric station can be taken into 

account with a good approximation when locally measured air pressure data before and after 

each individual strain data are involved into the correction. For this purpose neural networks 

with delayed input lines seem to be suitable. Three different neural networks were developed. 

All of them have delayed inputs taking six or twelve air pressure data before and after each 

momentary extensometric data into account to correct for remote atmospheric pressure 

variations on the basis of local pressure measurements. The effectiveness of the barometric 

pressure correction carried out by the three neural networks were investigated by tidal, Fast 

Fourier and coherence analyses and the results were compared with each other and with the 

results of simple regression methods. Tests of the neural network models show that they can 

be useful tools to correct extensometric data for barometric pressure and in contrast with the 

simple linear regression models the regional and global atmospheric effects can also be taken 

into account. Correction by neural networks yielded an improvement in the tidal factors 

relative to the correction by simple regression methods 2–5% and 30–40% in the semidiurnal 

and diurnal bands, respectively. 
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1. Introduction  

 

Atmospheric pressure variations associated with atmospheric tides and weather changes 

deform the Earth in a wide frequency range (Farrell, 1972). Although the magnitude of 

atmospheric tides is smaller than that of ocean tide loading, the incoherent atmospheric 

pressure variations are the major cause of random fluctuations in local gravity and Earth 

deformations (Warburton and Goodkind, 1977; Spratt, 1982; Merriam, 1992; van Dam, et al., 

1994, 1997, 2010; Wunsch and Stammer, 1997; Boy et al., 2006, 2009). A lot of publications 

deal with the correction of gravity measurements for atmospheric pressure (e.g. Niebauer 

1988; Crossley et al., 1995, 2002; Neumeyer et al., 2004; Klügel and Wziontek, 2009) and 

with the deformation of the Earth’s surface due to atmospheric variations (e.g. Rabbel and 

Zschau, 1985; van Dam and Wahr, 1987; van Dam et al., 1997, 2010; Latynina et al., 2003; 

Steffen et al., 2006; Gebauer et al., 2009, 2010). Kroner and Jentzsch (1999) summarized and 

compared the methods which are widely used for pressure correction. At present four methods 

and sometimes their combinations are used for the pressure reduction: local regression 

coefficient (effective admittance) applied also in the ETERNA 3.40 Earth tide data processing 
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program package (Wenczel, 1996); frequency-dependent admittance function (e.g. Crossley et 

al., 2002; Neumeyer et al., 2004); atmospheric Green’s function based on local air pressure 

data (e.g. Niebauer, 1988); atmospheric Green’s function calculated from local and regional 

pressure data (e.g. Spratt, 1982; van Dam and Wahr, 1987).  

 Correction of gravity measurement for atmospheric pressure using global (<1000 km) and 

regional (<50 km) pressure data yields improvement in the synoptic (days to seasonal) band, 

while using local pressure data improves the correction in the intertidal frequency bands down 

to periods of some hours, because the atmospheric pressure variations in the regional and 

global zones will be averaged out to some degree (Merriam, 1992; Boy et al., 1998).  Front 

passages above the station have effects on gravity data in the semidiurnal and diurnal tidal 

bands (Müller and Zürn, 1983).  Rabbel and Zschau (1985) showed that the shape of the 

horizontal strain curve is similar to the corresponding continuous pressure distribution curve, 

however it has opposite sign. The effect of the slowly changing global and regional pressure 

distributions is approximately (–1.5)–(–2.0)∙10
–10

 strain per hPa below the centre of the 

pressure anomaly while it can be disregarded in the diurnal and semidiurnal tidal bands. A 

discontinuous (stepwise) pressure distribution causes a nearly constant horizontal strain 

change with an extent of about ±50 km from the centre of the abrupt pressure change. This is 

the case when the front is moving above the station. The strain leads and lags relative to 

pressure variation during the passage of the front. This relationship can be applied for the 

improvement of the correction of extensometric data for atmospheric pressure loading by 

local pressure data.   

 Gebauer et al. (2010) modelled the behaviour of the Sopronbánfalva Geodynamic 

Observatory (SGO) during passage of high pressure front and they found that the observatory 

is very sensitive to pressure fronts due its topography, namely that the steep western rock face 

of the observatory is perpendicular to the extensometer and the prevailing wind direction 

(WE) and consequently the rock deformation caused by the absorbed wind energy is parallel 

with the instrument. The strain shows significant changes even when the pressure front is far 

away from the observatory.  

 Tidal analysis of uncorrected strain data measured at the SGO show that the tidal 

amplitude factors are 10% and 40% lower than one in the diurnal and semidiurnal band, 

respectively. The tidal factors of strain data corrected by ETERNA are in the semidiurnal 

band 2–3% and in the diurnal band 10% bigger than in the uncorrected ones (Mentes, 2010; 

Eper-Pápai et al., 2014). These results and the investigations of Gebauer et al. (2010) 

suggested that better tidal factors could be obtained when regional and global air pressure data 

were applied for correction. To avoid the time-consuming and tiring correction by regional 

and global air pressure data, neural networks with delayed inputs are suggested to correct 

strain data by locally measured pressure data. This kind of neural networks, in contrast with 

the correction by a simple linear regression method, can take more air pressure data before 

and after the momentary strain data into account to correct strain data. The applicability of 

neural networks to correct strain data on the basis of local pressure measurements is 

investigated in this paper. 

 

  

2. Neural network    

 

The Artificial Neural Network (ANN) is a computing tool consisting of many simple elements 

called neurons (Fig. 1), each having the capability of recognizing underlying relationship 

between input and output signals.  Neurons have one or more scalar inputs (x1, x2, ... xn) which 

are multiplied by a scalar (w1, w2, ... wn) and transferred to a summer to add up the weighted 

inputs (x1∙w1+x2∙w2, ... xn∙wn). This sum is the argument of the transfer function which 
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produces the output (F(x)). Usually, ANN consists of more neurons arranged in layers. The 

efficiency of an ANN depends on the number of layers and neurons. 

 

 
 

Fig. 1. A typical artificial neuron 

 

 Three different feed-forward neural networks with different complexity were developed 

for air pressure correction of extensometric data using the Neural Network Toolbox of Matlab 

(Demuth and Beale, 2001). Fig. 2 shows the simplest neural network NNW1. It consists of 

three layers (l=3, two input and an output layer) each containing four neurons (n=4) with 

seven inputs (i=7). In Layer#1 six inputs are for the delayed pressure data (d=6) and one input 

for the extensometric data and in Layer#2 six inputs are for the delayed extensometric data 

(d=6) and one input for the pressure data. In Layer#1 six hourly delayed pressure data are 

combined with each momentary extensometric data while in Layer#2 it is inverse: six hourly 

delayed extensometric data are combined with each pressure data. It means that twelve locally 

measured pressure data can be taken into account for the pressure correction of each 

extensometric data. The transfer functions of the neurons in the input layers of the NNW1 are 

“tansig” and the transfer function in the output layer is “purelin” (see the transfer functions in 

Fig. 2). Each neuron in the network has a bias input (b) to add a constant to the weighted 

inputs in order to shift the transfer function to the left by an amount of b. 

 

 
 

Fig. 2. Block diagram of the neural network NNW1 designed for air pressure correction of 

extensometric data. e and p denote extensometric and air pressure data series, respectively; d 

is the number of delays (hours); l is the number of layers; n
l
 is the number of neurons in layer 

l; IWl,i is the weight from input i to layer l; LWl,k is the weight from layer k to layer l, (k≤l); y 

is the output. 

 

 The other two neural networks (NNW2 and NNW3) are similar to NNW1. They contain a 

hidden layer between the output and the input layers (l=4) with 13 neurons (n=13) in the input 
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and hidden layers. In Layer#1 one input is for the extensometric and twelve inputs are for the 

delayed (d=12) pressure data and in Layer#2 one input is for the pressure data and twelve 

inputs for the delayed extensometric data. In this case the number of the delayed inputs is 

twelve thus twenty four locally measured pressure data can be taken into account for the 

pressure correction of each extensometric data. The output layer has one neuron with 13 

inputs. In NNW2 all transfer functions are “purelin”, while in NNW3 the transfer functions 

are “tansig” in the first three layers and “purelin” in the output layer. The output layer of each 

NNW has a target input (not denoted in Fig. 2). The y output signal of the NNW is compared 

to the target signal to get the best approach of the target during learning process of the neural 

network. 

 The neural networks were initialized by the Nguyen-Widrow layer initialization function 

(initnw). Widrow-Hoff weights/bias learning rule (learnwh) was used for updating the biases 

and weights during learning. The Levenberg-Marquardt backpropagation function (trainlm) 

served for training the networks, while the theoretical tide, calculated by the ETERNA for the 

actual year, was applied as a target function and the measured extensometric and pressure data 

were the input functions. During training the weights and biases of the network are iteratively 

adjusted to minimize the network performance function, which is the averaged squared error 

(mse) between the network output and the target. Error level of 10
–3

 was given as 

performance goal. After training the network the air pressure correction was carried out by the 

“sim” function, which takes the network inputs (extensometric (e) and pressure (p) data), the 

network parameters (weights and biases obtained during training) and returns the y output 

(Fig. 2). 

 

 

3. Methods 

 

Eleven years (2000–2010) extensometric data were yearly corrected for air pressure by 

different methods and analysed by the ETERNA 3.40 Earth tide data processing program 

(Wenzel, 1996) using the Wahr–Dehant Earth model (Dehant, 1987), the HW95 tidal 

potential catalogue (Hartmann and Wenzel, 1995) and the built-in high-pass filter with a cut-

off frequency of 0.8 cpd. To compare the effectiveness of the air pressure correction by neural 

networks with other methods the following extensometric raw data were subjected to tidal 

analysis: uncorrected, corrected by linear regression model (local admittance), corrected by 

the ETERNA during the analysis, and data corrected by neural networks (NNW1, NNW2, 

NNW3). The efficiency of the air pressure correction by neural networks compared to other 

methods was investigated through tidal parameters from ETERNA and Fast Fourier 

Transformation, regression and coherence analyses of the tidal adjustment residuals. 

 

 

4. Results and discussion 

4.1. Results of the corrections 

 

The training of the networks continued till the average mean square error reached a minimum 

value. The results can be seen in Table 1. In every case, the errors are about one order of 

magnitude higher than the given performance goal (10
–3

). The training process of NNW3 

produces the smallest errors and the simplest neural network NNW1 has slightly higher errors 

than NNW3. The smaller errors of NNW3 compared to NNW2 can probably be attributed to 

the non-linear transfer functions in the first three layers of NNW3 (see Demuth and Beale, 

2001). 
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Table 1. Average mean square errors of the training 

Year NNW1 NNW2 NNW3 

2000 0.047 0.057 0.016 

2001 0.041 0.066 0.026 

2002 0.032 0.058 0.020 

2003 0.024 0.043 0.016 

2004 0.018 0.031 0.012 

2005 0.029 0.022 0.010 

2006 0.038 0.023 0.010 

2007 0.027 0.048 0.021 

2008 0.061 0.031 0.013 

2009 0.048 0.102 0.039 

2010 0.042 0.075 0.023 

 

 Fig. 3 shows the results of tidal analysis of extensometric data corrected for air pressure by 

different methods, as an example, for the year 2005. Analysis results for other years are 

similar. All the three neural networks provide better amplitude factors (with the exception of 

the OO1 and M3M6 wave groups) than those calculated from the extensometric data 

corrected by simple regression methods. The small difference between the amplitude factors  

means that a good correction can be achieved. In Fig. 4 the amplitude factors of the main 

lunar diurnal O1 and main semidiurnal M2 tidal constituents are shown for the whole 

investigated period (2000–2010). The amplitude factors of O1 from the NNW3 model are 

nearer to the value of one than those from other methods. Correction by NNW1 produces also 

similar good amplitude factors as NNW3. The amplitude factors obtained by the correction 

with NNW3 are in every year about 0.9, while in the case of NNW1 there are nearer to one 

but the dispersion of the factors is high. While the amplitude factors of M2 from analysis of 

the corrected data by neural networks are slightly smaller than one those from the correction 

with simple regression methods are generally much higher than one. The situation is similar in 

the whole diurnal and semi diurnal band (see also Fig. 3). On the basis of tidal analysis it can 

be inferred that the NNW3 is more suitable for air pressure correction of extensometric data 

than the other two neural networks. 

 
Fig. 3. Amplitude factors obtained for year 2005 from tidal analysis of extensometric data 

corrected by different methods. UNC is uncorrected data; EC is data corrected by ETERNA; 

RC is data corrected by linear regression method; NNW1, NNW2, NNW3 are data corrected 

by neural networks. 
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4.2. Investigation of the effectiveness of the correction 

 

Looking at the tidal results the question arises: are the good amplitude factors due to the air 

pressure correction or the neural network adjusts its output data to the theoretical tide? To 

answer this question the residual curves from tidal analysis (the adjusted tidal components are 

subtracted from the measured data) were investigated. 

 The residual data and the local air pressure were subjected to linear regression analysis to 

investigate the remaining pressure data in the residuals. Since the NNW3 yielded the best 

amplitude factors, the regression coefficients between air pressure and the residuals from 

analysis of uncorrected data, corrected by ETERNA and by NNW3 were calculated. The 

results are summarized in Table 2. 

 

Table 2. Regression coefficients between tidal residuals and air pressure in the case of 

different correction of extensometric data for air pressure 

Year Uncorrected 

 

 

Corrected 

by 

ETERNA 

Corrected 

by 

NNW3 

[nstr/hPa] [nstr/hPa] [nstr/hPa] 

2000 1.9689 0.009 0.229 

2001 1.935 0.112 0.153 

2002 –3.881 0.046 –0.053 

2003 –3.280 0.027 0.112 

2004 –4.114 0.053 0.026 

2005 –3.546 0.078 0.037 

2006 –3.838 –0.001 0.203 

2007 –4.269 0.001 0.187 

2008 –3.823 0.184 0.199 

2009 –3.202 0.165 0.182 

2010 –3.380 –0.014 0.049 

 

 Regression coefficients are slightly larger in the case of NNW3 than in the case of the 

ETERNA correction. This may be explained by the fact that the neural network takes twelve 

    
Fig. 4. Amplitude factors of the O1and M2 tidal constituents obtained for years 2000–

2010 from tidal analysis of extensometric data corrected by different methods. UNC is 

uncorrected data; EC is data corrected by ETERNA; RC is data corrected by linear 

regression method; NNW1, NNW2, NNW3 are data corrected by neural networks. 
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air pressure data before and after the actual extensometric data while the ETERNA takes only 

each individual extensometric and pressure data into account during the correction and 

similarly the related pressure and residual data are used for calculation of the regression 

coefficients. To investigate this assumption the amplitude spectrum of the residuals and the 

air pressure were calculated (Fig. 5).  It can be seen that the spectral amplitudes from the 

NNW3 correction in the diurnal and semidiurnal frequency ranges are about the half of the 

amplitudes obtained by the tidal analysis of uncorrected extensometric data (UNC) and data 

corrected by ETERNA (EC). 

 
Fig. 5. Amplitude spectrum of the air pressure data, the residuals of tidal analysis of the 

uncorrected  extensometric data (UNC), data corrected by ETERNA (EC), and data corrected 

by neural network (NNW3). 

 

 The coherence analysis between pressure and residual data (Fig. 6) also shows that the 

neural network eliminates the air pressure effect in the whole frequency range while the 

correction by the ETERNA decreases it only in the diurnal and semidiurnal frequency 

domains. Fig. 7 shows the coherence between the theoretical tide and the uncorrected 

extensometric data as well as extensometric data corrected by different methods (EC, NNW2 

and NNW3). While correction by ETERNA improves the coherence, the neural networks 

decrease it. It is somewhat inconsistent with the former findings. The coherence between two 

signals is low when the signals are nonlinear, either there is a phase shift between the signals 

or the signals have high noise (Formenti, 1999). The transfer functions of NNW2 are linear 

(“purelin”). The coherence functions of NNW2 and NNW3 are similar which means that the 

non-linear transfer functions in the first three layers of NNW3 do not cause signal non-

linearity during the correction. The noises are in the same order in the case of all corrections, 

so we can assume that the noise cannot cause the coherence results of Fig. 7. The phase shifts 
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of the O1 and M2 tidal waves from the uncorrected data are –5 and –13 degrees, respectively. 

Both neural networks change these phases into –70 degrees. Phases of other waves are 

practically unchanged. It can be inferred that this phase shift causes the lower coherence in 

the diurnal and semi diurnal band in the case of the neural networks. In contrast with this, the 

correction by ETERNA changes the phases of P1 and K2 significantly (by about 130 degree) 

and lefts the phases of O1 and M2 unchanged compared to the uncorrected data. The 

coherence here is better than the coherence between the theoretical tide and uncorrected 

extensometric data (Fig. 7). This result queries the assumption that the phase shifts decrease 

the coherence but this question needs further investigations. The lower coherence in the case 

of the extensometric data corrected by neural networks hints to the characteristic of the neural 

network that it does not tend to fit the measured data to the target function (theoretical tide) 

during the correction procedure. 

 
 

Fig. 6. Coherence between air pressure and tidal residuals obtained by the analysis of 

uncorrected extensometric data (UNC), data corrected by ETERNA (EC) and data corrected 

by neural network (NNW3). 

 
 

Fig. 7. Coherence between theoretical tide and uncorrected extensometric data (UNC), 

extensometric data corrected by ETERNA (EC) and neural networks (NNW2 and NNW3). 
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5. Conclusions 

 

The purpose of this study is to investigate the applicability of neural networks to correct 

extensometric data for barometric pressure on the basis of local pressure measurements. Three 

neural networks with different complexity were designed and tested. The first neural network 

(NNW1) has 3 layers with 4 neurons and non-linear transfer function in the first two layers 

and a linear transfer function in the last layer. The NNW1 combines 6 hourly pressure data 

before and after each individual extensometric data to correct extensometric data for 

barometric pressure. The other two neural networks (NNW2 and NNW3) have 4 layers with 

13 neurons in each layer. The NNW2 has linear transfer function in each layer while the 

NNW3 has non-linear transfer function in the first three layers and a linear transfer function in 

the output layer. Both neural networks combine 12 hourly pressure data before and after each 

individual extensometric data. 

 The results from the effectiveness investigations show that the correction can be made by 

all of the investigated neural networks. Increasing the complexity of the model the 

effectiveness of the correction increases only slightly. The best correction was obtained from 

the NNW3 model.  

 NNW3 decreased the pressure induced strain amplitudes in the tidal residual by 50% 

compared to the residual of the simple regression method. While the NNW3 removed the 

pressure in the whole investigated frequency range the regression method of ETERNA 

corrected the strain data only in the diurnal and semidiurnal frequency bands. 

 Correction by neural networks yielded an improvement in the tidal factors relative to the 

simple regression methods by 2–5% and 30–40% in the semidiurnal and diurnal bands, 

respectively.  

 Coherence analysis between theoretical tide and corrected extensometric data resulted in 

better coherence when strain data was corrected by the ETERNA than when the data were 

uncorrected, while the coherence was lower in the case of NNW3 correction. The reason for 

this must be investigated. Probably a further improvement of the NNW3 is necessary. 

 Investigations show that neural networks can be a useful tool to correct extensometric data 

for barometric pressure, whereas, in contrast with the simple linear regression models, they 

can include more air pressure data before and after each individual strain data into the 

correction than simple regression methods and thus the regional atmospheric effects can be 

taken into account to some extent on the basis of local atmospheric data. 

 

 

Acknowledgements 

 

This work was funded by the Hungarian National Research Fund (OTKA) under projects No. 

K 71952 and K 109060. Special thanks to Ildikó Eperné-Pápai for her help in data 

preprocessing and Tibor Molnár for his careful maintenance of the instruments. 

 

 

References 

 

Boy, J.-P., Hinderer, J., Gegout, P., 1998. Global atmospheric pressure loading and gravity. 

Phys. Earth Planet. Inter. 109, 161–177. 

Boy, J.-P., Longuevergne, F., Boudin, F., Jacob, T., Lyard, F., Llubes, M., Florsch, N., 

Esnoult, M.-F., 2009. Modelling atmospheric and induced non-tidal oceanic loading 

contributions to surface gravity and tilt measurements. J. Geodyn. 48 (3–5), 182–188, 

doi:10.1016/j.jog.2009.09.22. 

BARRIOT
Text Box
12009




Boy, J.-P., Ray, R., Hinderer, J., 2006. Diurnal atmospheric tide and induced gravity 

variations. J. Geodyn. 41 (1–3), 253–258, doi:10.1016/j.jog.2005.10.010. 

Crossley, D.J., Jensen, O.G., Hinderer, J., 1995. Effective barometric admittance and gravity 

residuals, Phys. Earth Planet Inter. 90, 221–241. 

Crossley, D.J., Hinderer, J., Rosat, S., 2002. Using Atmosphere-Gravity Correlation to Derive 

a Time-Dependent Admittance.  Bull. d’Inf. Marées Terr. 136, 10809–10820    

Dehant, V., 1987. Tidal parameters for an unelastic Earth. Phys. Earth Planet. Inter. 49, 97–

116. 

Demuth, H., Beale, M., 2001. Neural Network Toolbox for Use with MATLAB, User’s 

Guide, Version 4. The Math Works, Inc. 

Eper-Pápai, I., Mentes, G., Kis, M., Koppán A., 2014. Comparison of two extensometric 

stations in Hungary. J. Geodyn, 80, 3–11, dx.doi.org/10.1016/j.jog.2014.02.007. 

Farrell, W.E., 1972. Deformation of the Earth by surface loads. Rev. Geophys. Space Phys. 

10, 761−797.  

Formenti, D., 1999. What is the coherence function and how can it be used to find 

measurement and test setup problems. Sound and Vibration, Questions and Answers, 

Sage Technologies, Morgan and Hill, California, 2–3. 

Gebauer, A., Kroner, C., Jahr, T., 2009. The influence of topographic and lithologic features 

on horizontal deformations. Geophys. J. Int. 177, 586–602, doi:10.1111/j.1365-

246X.2009.04072.x. 

Gebauer, A., Steffen, H., Kroner, C., Jahr, T., 2010. Finite element modelling of atmosphere 

loading effects on strain, tilt and displacement at multi-sensor stations. Geophys. J. Int. 

181, 1593–1612, doi: 10.1111/j.1365-246X.2010.04549.x. 

Hartmann, T., Wenzel, H.G., 1995. The HW95 tidal potential catalogue. Geophys. Res. Lett. 

22, 3553–3556. 

Klügel, T., Wziontek, H., 2009. Correcting gravimeters and tiltmeters for atmospheric mass 

attraction using operational weather models. J. Geodyn. 48 (3–5), 204–210, 

doi:10.1016/j.jog.2009.09.01. 

Kroner, C., Jentzsch, G., 1999. Comparison of different barometric pressure reductions for 

gravity data and resulting consequences. Phys. Earth Planet. Inter. 115, 205–218. 

Latynina, L.A.,  Vasil’ev, I.M., 2003. The Earth surface deformations caused by air pressure 

variations. J. Geodyn. 35, 541–551, doi:10.1016/S0264-3707(03)00013-9. 

Mentes, Gy., 2010. Quartz tube extensometer for observation of Earth tides and local tectonic 

deformations at the Sopronbánfalva Geodynamic Observatory, Hungary. Rev. Sci. 

Instrum. 81, 074501, doi:10.1063/1.3470100. 

Merriam, J.B., 1992. Atmospheric pressure and gravity. Geophys. J. Int., 109, 488−500.  

Müller, T., Zürn, W., 1983. Observations of Gravity Changes During the Passage of Cold 

Fronts. J. Geophys. 53, 155−162. 

Niebauer, T.M., 1988. Correcting gravity measurements for the effects of local air pressure. J. 

Geophys. Res. 93 (B7), 7989–7991. 

Neumeyer, J., Hagedoorn, J., Leitloff, J., Schmidt, T., 2004. Gravity reduction with three-

dimensional atmospheric pressure data for precise ground gravity measurements. J. 

Geodyn. 38, 437–450. 

Rabbel, W., Zschau, J., 1985. Static deformations on gravity changes at the earth’s surface 

due to atmospheric loading. J. Geophys. 56, 81−99. 

Spratt, R.S., 1982. Modelling the effect of atmospheric pressure variations on gravity. 

Geophys. J. R. Astr. Soc. 71, 173–186. 

Steffen, H., Kuhlmann, S., Jahr, T., Kroner, C., 2006. Numerical modelling of the barometric 

pressure-induced noise in horizontal components for the observatories Moxa and 

Schiltach. J. Geodyn. 41 (1–3), 242–252, doi:10.1016/j.jog.2005.08.011.   

BARRIOT
Text Box
12010




van Dam, T.M., Altamimi, Z., Collilieux, X., Ray, J., 2010. Topographically induced height 

errors in predicted atmospheric loading effects. J. Geophys. Res. 115, B07415, 

doi:10.1029/2009JB006810.  

van Dam, T.M., Blewitt, G., Heflin, M.B.,1994. Atmospheric pressure loading effects on 

Global Positionig System coordinate determinations. J. Geophys. Res. 99 (B12), 

23,939−23,950. 

van Dam, T.M., Wahr, J., 1987. Displacements of the Earth’s Surface Due to Atmospheric 

Loading: Effects on Gravity and Baseline Measurements. J. Geophys. Res. 92 (B2), 

1281−1286. 

 van Dam, T.M., Wahr, J., Chao, Y., Leuliette, E., 1997. Predictions of crustal deformation 

and of geoid and sea-level variability caused by oceanic and atmospheric loading. 

Geophys J. Int. 129, 507–517.   

Warburton, R.J., Goodkind, J.M., 1977. The influence of barometric pressure variations on 

gravity. Geophys. J. R. Astr. Soc. 48, 281–292. 

Wenzel, H.G., 1996. The nanogal software: Earth tide data processing package ETERNA 

3.30. Bull. d’Inf. Marées Terr. 124, 9425–9439. 

Wunsch, C., Stammer, D., 1997. Atmospheric loading and the oceanic “inverted barometer” 

effect. Rev. Geophys. 35 (1), 79–107. 

 

 

BARRIOT
Text Box
12011




 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           BLANK PAGE 


