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Summary : Although there is a lot of investigations on the ocean pole tide, there are not so many 
publications of its contribution to the gravity field. One of the reasons may be that both the ocean 
pole tide and the gravity pole tide are not easily determined by observations, as they are weak 
and, being close to the annual period, disturbed seriously by other geophysical phenomena, such 
as atmospheric and oceanic global circulation. With the development of the observation 
techniques, these two kinds of signals can be determined now. Results from the 
TOPEX/Poseidon (T/P) satellite altimetry for detecting the ocean pole tide confirm that the 
long-wavelength component of the geocentric pole tide deformations due to the Chandler wobble 
is consistent with the self-consistent equilibrium response model and the classical equilibrium 
one can only explain 70% of the variations. In addition, the superconduting gravimeters (SG) are 
now able to record and determine the gravity effect caused by polar motion. It is due to their high 
precision (as high as 10-11 m.s-2) and very low drift (only at the level of 10 nm.s-2 per year). Thus 
it is meaningful to estimate the contribution of the ocean pole tide to the gravity field now. 

On the assumption that the ocean pole tide is in equilibrium, the loading gravity effects of 
both the classical and the self-consistent ocean pole tide are calculated at each of the 9 SG 
stations where gravity pole tide has been determined by Ducarme & al. [2006]. Then, after 
introducing a well-chosen phase lag, the amplitude of the ocean pole tide gravimetric vector at 
each of these stations is estimated with a linear fit method. Numerical results demonstrate that 
the amplitude of the loading gravity effect of the ocean pole tide is at the level of 10-9 ms-2 and 
that its phase lag is not negligible. The contribution of the self-consistent ocean pole tide to the 
gravity field variations cannot be ignored as it can increases the amplitude of the pole tide 
gravimetric factor by more than two per cent, but its effect on the phase remains negligible. The 
self-consistent model predicts effects 10% larger than the classical one. 

 

1. Introduction 
Both the ocean pole tide and the gravity pole tide are weak signals disturbed by many geophysical factors. 

Therefore, they are difficult to determine. The ocean pole tide is the ocean response to the variation of the 

centrifugal force. The equilibrium ocean pole tide assumes that the displaced ocean surface is in equilibrium with 

the equipotential surface [Lambeck 1988; Munk and Macdonald, 1960]. The classical equilibrium ocean pole tide 

is an equilibrium ocean pole tide conserving mass in non-global oceans overlying an elastic earth [Haubrich and 

Munk 1959; Dickman 1985; Desai 2002]. The self-consistent ocean pole tide further includes the tidal loading and 

the self-gravitation, in addition to the classical equilibrium ocean pole tide [Dahlen 1976; Agnew 1978; Desai 

2002]. The assumption of an equilibrium ocean pole tide is controversial in the investigation of the ocean pole tide 

[Proudman 1960; Munk and Macdonald, 1960; Wunsch 1974; Naito, 1979, 1983; O’Connor 1983; Dickman 

1985]. Recent results from TOPEX/Poseidon (T/P) satellite altimetry demonstrate that the long-wavelength 



 11444 

component of the geocentric pole tide deformations at the Chandler period is consistent with the theoretical 

self-consistent equilibrium response and can explain 70% of variations of the theoretical classical equilibrium 

response [Desai, 2002]. In addition, the superconduting gravimeters (SG) are able to record and precisely 

determine the gravity effect caused by polar motion, thanks to their high precision (as high as 10-11 ms-2) and very 

low drift (only at the level of 10 nms-2 per year). Thus the deployment of SG’s in the framework of the Global 

Geodynamics Project (GGP) provides an opportunity to determine accurately the pole tide gravity effect [Crossely 

1999; Loyer 1999; Xu J. Q. 2004; Harnisch 2006; Ducarme et al., 2006]. Consequently, we have the reason and 

the possibility to estimate the influence of ocean pole tide on gravity field now. 

There are only a few publications on the tidal loading effect of the ocean pole tide. Assuming that the pole 

tide is in equilibrium and has no phase lag, Hinderer and Legros point out that the pole tide gravimetric factor 

increases by 0.04, in the case of global oceans without continent [Hinderer and Legros 1989]. If the non-global 

oceans are used, a rough computation taking into account the degree 0 order 0 of the ocean function is done by 

Dehant, the increase is 0.025. And the phase shifts rang from 9º to 22º with an uncertainty of about 5º [Dehant and 

Zschau 1989]. Loyer introduces the work of Hinderer and Dehant when he tries to explain the influence of ocean 

pole tide on gravity field [Loyer 1999]. And Boy shows that the amplitude of the gravimeter factor increases from 

the theoretical value for an elastic Earth 1.16 to 1.185 and the phase lag is less than 0.5º after taking into account a 

static model of oceanic pole tide [Boy, 2000]. Xu J.Q. substitutes loading vector of Chandler period with that of 

the long period tidal wave SSa to estimate the influence of the ocean pole tide on the pole tide gravimetric factor, 

and the increase is about 0.024 [Xu J. Q. 2004]. The emphasis of all these previous works is not to estimate the 

influence of the ocean pole tide so that only brief introductions are given in these works. 

In this paper, we give a detailed description of the influence of the equilibrium ocean pole tide on the gravity 

field. The theoretical gravity pole tide is computed in advance. Then the gravity loading effect of the classical and 

the self-consistent ocean pole tide are computed, respectively. After manually introducing a proper phase lag in 

the calculation of the gravity loading effect, the relative amplitude of the loading pole tide with respect to the 

theoretical gravity pole tide is obtained by fitting the gravity loading effect and the theoretical gravity pole tide 

with a linear fit method. We present here the relative gravity loading vectors (amplitude factor and phase lag) of 

all the GGP stations. But only station Brussels is discussed in the paper because the processing is similar to all the 

other stations. 

 

2. The pole tide potential  
In an Earth’s fixed rotating coordinate system with its mean rotation axis is initially aligned with the z  

axis of the coordinate system, x  is oriented along the Greenwich meridian, and y  along the 90ºE meridian, 

the instantaneous rotation vector )(tω� can be expressed as  

( )[ ])(1)()()( 321 tmtmtmt +Ω=ω�                                              (1) 

where Ω  is the mean rotation rate of the Earth, Ω  = 7.292115×10-5 rad·s-1; )(1 tm and )(2 tm  describe 

the polar motion, )(3 tm describes the Earth’s rotation rate. The small time depending variables )(tmi  are 

usually defined in terms of small quantities ( )(tmi <<1) [Lambeck, 1988; Munk and Macdonald, 1960]. To the 

first order )(1 tm and )(2 tm  are the angular offsets of the instantaneous rotation vector from the z axis of the 

defined coordinate system, in the direction of the x axis and y axis of the coordinate system, respectively.  
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The instantaneous centrifugal potential ( )zyxVc ,,  at an arbitrary point on the Earth ( )zyxr ,,=� , can be 

written to the first order in )(tmi , as [Wahr 1985]. 
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The time dependant differential centrifugal potential ( )tzyxV ,,,  is then obtained by subtracting the 

centrifugal potential ( )zyxVc ,,  induced by the initial mean rotation vector 0ω�  from the instantaneous 

centrifugal potential ( )zyxVc ,, . 
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The magnitude of the variations in the rotation rate )(3 tm  is at least two orders smaller than that of 

variations in the pole coordinates )(1 tm  and )(2 tm . Therefore, the contribution of )(3 tm  to the differential 

centrifugal potential can be omitted. The remainder of the differential centrifugal potential is called the pole tide 

potential, which is only a function of the location of the instantaneous rotation pole. If the arbitrary point 
( )zyxr ,,=�  is expressed in geographical coordinates (colatitude θ  and longitude λ ), the pole tide potential 

is then expressed as 
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3. The theoretical gravity pole tide 
The gravity change caused by the pole tide potential is given by the following formula [Wahr 1985; Huang C. 

L. 1998; Xu J. Q. 2004], 

( ) ( ) θλλδλθ 2sinsin)(cos)(,, 21
2 tmtmrtg +Ω⋅⋅=∆                                 (5) 

where r is usually taken as the mean radius of the Earth, r = a =6378136.6 m. The value of δ  is 1.0 for a rigid 

Earth, and about 1.16 for a spherical elastic Earth. The theoretical gravity pole tide is calculated with formula (5) 

with the value δ =1, that is for a rigid Earth. The instantaneous pole tide coordinates )(1 tm  and )(2 tm  are 

computed from the observed values )(tx  and )(ty  which are defined in a celestial ephemeris coordinate 

system. They are expressed in the form of complex notation [Gross 1992]. 
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The transformation from p (t) to m (t) is used to eliminate the drift of the mean pole.  
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The observed instantaneous pole tide coordinates )(tx  and )(ty  are downloaded from the International 

Earth Rotation Service (IERS). We choose a time period January 1, 1995 to December 31, 1999, when the 

amplitude of the theoretical gravity pole tide covers almost its total range, in order to see the corresponding 

characteristic of the gravity loading effect of the ocean tide. The bold lines in Figure 1 and Figure 2 show the 

theoretical gravity pole tide at station Brussels. 

 

4. The classical and the self-consistent equilibrium ocean pole tide 
The classical equilibrium ocean pole tide ( )tC

O ,, λθζ  of an arbitrary point ( )λθ ,,ar  can be computed by 

the following equation [Desai, 2002]. 
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where ( )Ci ϕγγ ∆⋅= exp22 , is the Love number related to the ocean tide. Sϕ∆  denotes the phase lag between 

the classical equilibrium ocean pole tide and the static ocean tide, 2γ =0.7053. The mean gravitational 

acceleration at the Earth’s surface g has been substituted with the ratio 2aGM in the calculation, where 

GM is the Earth’s gravitational constant, GM =3.9860004418×1014 m3·s-2. The complex constant CK  is 

introduced to impose the conservation of mass on the classical equilibrium ocean pole tide. ( )λθ ,CE  is defined 

as a normalized equilibrium admittance function for the classical equilibrium ocean pole tide, so that the mass 

conservation can be done easily and the computation is then independent of the time. The ocean function 

( )λθ ,O  has value of 1 on the ocean and 0 on the land [Muck and Macdonald, 1960]; the boundary of the ocean 

and the land used in the calculation is the boundary defined in ocean tide model NAO99 [Matsumoto 2000]. 

The self-consistent equilibrium ocean pole tide ( )tS
O ,, λθζ  of an arbitrary point ( )λθ ,,ar  can be 

computed by the following equation [Desai, 2002]. 
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where the Love number 2γ  is also assumed with the complex form, ( )Si ϕγγ ∆⋅= exp22 , but Sϕ∆  denotes 

the phase lag between the self-consistent equilibrium ocean pole tide and the static ocean tide. The complex 

constant SK  is also introduced here to impose the conservation of mass on the self-consistent equilibrium ocean 

pole tide. ( )λθ ,SE  is defined as a normalized equilibrium admittance function for the self-consistent 

equilibrium ocean pole tide. The second term in the square brackets of ( )λθ ,SE  describes the effects of tidal 

loading and self-gravitation of the ocean pole tide, where nγ ′  is load Love number of degree n  and nα  is the 

factor ( ))12(3 +n ( )ew ρρ , wρ  and eρ  define the mean densities of the ocean water and the Earth, 

respectively, with ( )ew ρρ � 0.19 [Munk and MacDonald 1960]. The function ( )λθ ,SE  can be expanded 

into spherical harmonic components defined by coefficients ( )nmnm bia ⋅+ . We obtained the spherical harmonic 

coefficients from Desai by personal communication. And the coefficients given by Desai are expanded to degree 
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n =360, which implies a spatial resolution of 0.5 degrees in latitudes and longitude. 
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5. Gravity loading effect of the equilibrium ocean pole tide 
The gravity loading effect of the equilibrium ocean tide ( )tL ,, λθ  at a given time t  can be calculated by a 

convolution [Agnew 1997; Zhou J. C. 2005] 

( ) ( ) ( ) dAdGtHatL
OS

w   sin ,,,, 2 ψψψλθρλθ �� ′′=                                   (10) 

where ( )tH ,,λθ ′′  is the height of the ocean tide at the point of the colatitude 'θ  and the longitude 'λ  at the 

corresponding time. And )(ψG  is the Green’s function; A  is the azimuth from the selected point ( )λθ ,  and 

the loading point ( )λθ ′′, ; ψ ∈[0,π] is the angular distance between the selected point ( )λθ ,  and the loading 

point ( )λθ ′′, , given by the formula. 

  )cos(sinsincoscoscos ''' λλθθθθψ −+=                                    (11) 

    As an example, we calculate the gravity loading effects of the classical and the self-consistent ocean pole tide 

at station Brussels. Figure 1 shows the comparison with the theoretical gravity pole tide before (a) and after (b) 

introducing a well-chosen phase lag. From Figure 1 (a) we can see that the amplitude of the gravity loading effect 

of the self-consistent ocean pole tide is larger than that of the classical ocean pole tide, the amplitude of both of 

them being larger than 10-9 m.s-2. There is a slight but noticeable phase shift between ocean pole tide loading and 

the theoretical gravity pole tide in Brussels. From Figure 1 (b) we can see that the difference of the amplitude 

between the loading effect of the self-consistent ocean pole tide and that of the classical ocean pole tide decreases 

slightly; when the phase shift is corrected.  

 

  

 

 

 

 

 

 

 

 

 

 
Figure 1  Comparison of the theoretical gravity pole tide and the gravity loading effects of the ocean pole tide before (a) and after 

(b) introducing a well-chosen phase lag. The bold line is the theoretical gravity pole tide; the fine line is the gravity loading effect of 

the classical equilibrium ocean pole tide; the dashed line is the same effect of the self-consistent equilibrium ocean pole tide 

The gravity loading vector takes the complex forms Li
LL e ϕδδ ∆⋅=

�

, where Lδ is the amplitude and Lϕ∆  

refers to the phase difference. Lags correspond to negative values. The estimation of the gravity loading vector is 
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based on the assumption that the theoretical gravity pole tide ( )tg ,,λθ∆  and the gravity loading effect of the 

ocean tide ( )tL ,,λθ  at a given point ( )00 ,λθ  has the relationship shown in the following equation.  

( ) ( ) ( )tgetgtL Li
LL ,,,,,, 000000 λθδλθδλθ ϕ ∆⋅⋅=∆⋅= ∆�

                        (12) 

The assumption is reasonable, as it can be seen from Figure 2 and Figure 3. Figure 2 shows the phasor plot of the 

gravity loading effect of the classical equilibrium ocean pole tide and the theoretical gravity tide of station 

Brussels, before and after introducing the phase difference. Figure 3 corresponds to Figure 2 for the  

self-consistent equilibrium ocean pole tide. From Figure 2 and Figure 3, we can see that phasor plot of the gravity 

loading effects with respect to the theoretical gravity looks like an ellipse for both the classical and the 

self-consistent ocean pole tide. After introducing a well-chosen phase difference, it can be completely fitted by a 

straight line. Therefore, we can conclude that the assumption in equation (8) is correct. If the linear fit takes the 

form BAXY += , the coefficient A  of the linear fit is the amplitude factor of the loading gravimetric vector. 

The well-chosen phase difference is the phase of the loading gravimetric vector.  

 

 

 

 

 

 

 

 

 

 

Figure 2:  Linear fit of the gravity loading effect of the classical equilibrium ocean pole tide and the theoretical gravity tide of 

station Brussels, before (a) and after (b) introducing a well-chosen phase lag. The white straight line in (b) is the fit line. 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Linear fit of the gravity loading effect of the self-consistent equilibrium ocean pole tide and the theoretical gravity tide of 

station Brussels, before (a) and after (b) introducing a well-chosen phase lag. The white straight line in (b) is the fit line. 

The loading gravimetric vectors of all the other GGP stations are obtained with the same method. The 

numerical result for 9 stations is given in the Table 1. From table 1, we can see that the largest amplitude of 
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loading gravimetric vectors is the amplitude of Canberra, The amplitude factor value is 0.0363 for the classical 

model and 0.0429 value for the self-consistent one. The reason we considered is that the station Australia is 

surrounded by the oceans. The smallest amplitude of loading gravimetric vectors is found at Boulder, The 

amplitude factor value is 0.0137 for the classical model and 0.0152 value for the self-consistent one. The reason is 

that the station Boulder lies in the inner part of the North America mainland and is far away from the ocean. The 

mean value for all the stations is 0.0224 for the classical model and 0.0247 for the self-consistent one. Compared 

with the theoretical value of the gravimetric factor δ =1.158 for a non-hydrostatic and anelastic Earth model 

given by Dehant in 1999, these two mean values correspond to 1.9% and 2.1%, respectively [Dehant et al., 1999]. 

Therefore, the influence of the ocean pole tide cannot be omitted when we try to determine the gravimetric factor 

δ  with gravity observations. The largest phase difference is found at station Vienna, an advance of 12.10 days 

for the classical ocean pole tide and of 15.55 days for the self-consistent one. The smallest phase difference is the 

phase advance of Boulder too, 4.32 days for the classical ocean pole tide and 4.75 days for the self-consistent one. 

Phase lags are observed in Canberra and Cantley. However it should be noted that, as the load vectors represents 

2% of the direct gravity pole tide, a 10° phase shift will only produce a 0.2° phase difference on the observed 

gravity pole tide. Considering the results of Ducarme et al. [2006] it is, for the while at least, below the limit of 

detection. Compared to the preliminary evaluations given in Ducarme et al. [2006] there is an increase of the tidal 

loading of the order of 30%. The mean corrected tidal factor should become δ =1.156 for the classical ocean pole 

tide model and δ =1.154 with the self-consistent one. However the RMS error on the mean tidal gravity 

amplitude factor is still at the 0.5% level so that both values agree with the value δ =1.158 of the DDW99 model 

[Dehant et al., 1999].  

Table 1: Loading gravimetric vectors of 9 GGP stations 

Loading gravimetric vector (classical) Loading gravimetric vector (self-consistent) 

Station Amplitude factor 

δL 

Phase diff. at 

435day ( º ) 

Time shift 

(day) 

Amplitude factor

δL 

Phase diff. at 

435day ( º ) 

Time shift 

(day) 

Boulder 0.0137  3.60    4.32    0.0152  3.96   4.75    

Brussels 0.0264  7.20   8.64    0.0285  9.00   10.80    

Canberra 0.0363  -3.24   -3.89    0.0429  -4.14   -4.97    

Cantley 0.0210  -8.46   -10.15    0.0236  -9.36   -11.23    

Membach 0.0242  8.10   9.72    0.0261  9.90   11.88    

Moxa 0.0201  9.90   11.88    0.0217  12.24   14.69    

Potsdam 0.0210  9.54   11.45    0.0223  11.88   14.26    

Strasbourg 0.0214  8.64   10.37    0.0233  10.80   12.96    

Vienna 0.0174  10.08   12.10    0.0186  12.96   15.55    

Mean value 0.0224   ---  ---  0.0247 ---  ---  

6. Conclusions 
The amplitude of the loading gravity effect of the ocean pole tide is of the level of 10-9 ms-2, and its phase 

difference with respect of the gravity pole tide ranges between -11 and +16 days. This loading effect can increase 
the amplitude factor of gravity the pole tide by more than two percent, but its effect on the phase remains 
negligible. The self-consistent model predicts effects 10% larger than the classical one. 
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