Effects of the Earth's asymmetry on ${}_0S_0$ amplitude: predictions and observations after the 2004 Sumatra-Andaman earthquake

Severine Rosat, Shingo Watada and Tadahiro Sato

The 2004 Sumatra-Andaman earthquake with a moment magnitude greater than 9 has strongly excited the low-frequency seismic modes, particularly the seismic mode ₀S₀. ₀S₀ is a radial fundamental spheroidal mode called "breathing mode" of the Earth that oscillates at a period of 20.5 minutes and that is associated with changes in the Earth's circumference. Amplitude measurements of ${}_{0}S_{0}$ at 11 Superconducting Gravimeters (SGs) sites reveal a clear latitude dependency of \pm 2% in deviation from the mean amplitude between the latitudes 80°N and 40°S. In a non-rotating spherically symmetric Earth's model (PREM-like model), $_{0}S_{0}$ amplitude is the same all over the Earth's surface. The Earth's rotation and ellipticity introduce a strong coupling of ${}_{0}S_{0}$ with the spheroidal harmonic degree two ${}_{1}S_{2}$, ${}_{0}S_{2}$ and ${}_{2}S_{2}$ modes through elliptic figure of the Earth and with the toroidal degree one $_{1}T_{1}$ and $_{2}T_{1}$ modes through the Coriolis force. The coupling effect through the rotation and ellipticity perturbs $_{0}S_{0}$ amplitude by introducing a latitude dependency with a maximum change of 1% between the equator and the pole. When we introduce the seismic lateral heterogeneities, 0S0 strongly couples to ${}_{0}S_{5}$, and next to ${}_{1}S_{2}$. ${}_{1}S_{3}$, ${}_{4}S_{2}$, ${}_{3}S_{2}$ and ${}_{0}S_{2}$ also couple to ${}_{0}S_{0}$. In this case we observe both a latitude and longitude dependency of ${}_{0}S_{0}$ amplitude at the Earth's surface and ${}_{0}S_{0}$ amplitude is 2% higher at the pole than at the equator. The variation of ${}_{0}S_{0}$ amplitude as a function of latitude is therefore consistent between the theoretical predictions and the observations.