
 11175

Comparison of some tidal prediction programs 
and accuracy assessment of tidal gravity predictions 

B. Ducarme 
   Research Associate NFSR, Royal Observatory of Belgium, Av. Circulaire 3, 
   B-1180Brussels, Belgium 
 
1. Introduction 
 
The strongest precision requirements concerns tidal gravity prediction. It is a reason why we 
shall investigate this tidal component. The comparison work is not exhaustive as we did not 
include the VAV (Venedikov and Vieira, 2004) or the BAYTAP-G (Tamura et al., 1991) 
approaches. 
Two main approaches will be compared here:  

- PREDICT (Wenzel, 1996) and T-soft  (Van Camp and Vauterin, 2005); 
- MT80w and MT80Tw (ICET, http://www.astro.oma.be/ICET/). 

We shall follow the different steps required to obtain an accurate gravity tides prediction from 
the simple case of the astronomical tides to the tides on the real Earth 
The accuracy of the tidal prediction will depend on the number of terms used in the Tidal 
Potential development. We shall see that other refinements are also required. 
The tidal potential development have been computed with an increasing complexity: Doodson 
(1921) 378 terms, Cartwright-Edden (CTE505, 1973) 505 terms, Buellesfeld (1985) 656 
terms, Tamura (TAM1200, 1987) 1,200 terms, Xi-Qin-Wen (1989) 2,933 terms, Roosbeek 
(1996) 6,499 terms and Hartmann-Wenzel (HW95, 1995) 12,935 terms. Recently Kudryatsev 
(2004) proposed a tidal potential development KSM03 with 28,806 terms. 

PREDICT is the most versatile application and can use all the existing tidal potentials 
from Doodson up to Hartmann-Wenzel HW95. T-soft uses the same programming as 
PREDICT but is restricted to the TAM1200 tidal potential. 

The MT80w is restricted to the CTE505 potential and MT80Tw can use TAM1200 and 
CTE505. 
We shall compare the results of the different software for the station Hannover (λ=9°.7144E, 
ϕ= 52°.3868N, h=110m) during the year 1990. The peak to peak amplitude of the gravity 
tides reaches 2,200nms_2. We shall call it the “tidal range” (TR) 
To compare different tidal predictions we generally fit a linear regression between the results 
to obtain a scale factor and a RMS error. We can also give the range of the differences. 
 
2. The astronomical tides 
 
The first step is the precise evaluation of the direct influence of the Moon, the Sun and the 
planets, generally called the “astronomical tides”. It is based on the developments of the tidal 
potential (Melchior, 1978). To derive a tidal prediction we have to consider a scale factor 
often referred as “Doodson” constant, a geometrical part depending on the position at the 
surface of the Earth (geodetic coefficients), which is different for each tidal component, and 
the harmonic part, which is a sum of sinusoidal terms. The development of the tidal potential 
provides for each term a normalised amplitude and an argument which is a linear combination 
of the astronomical arguments of the celestial bodies.  
Only 6 arguments are required for the Luni-solar tides. The fundamental variables chosen by 
Doodson are 
τ&  = 14.49205 (period of 24h50m) for the mean lunar time τ 
The orbital motion of the Moon requires 3 supplementary variables i.e. 
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s&  = 0.544902 (period of 27.321 days) s defines the position of the Moon on its orbit. It 
corresponds to the variation of the declination of the Moon (tropic month) 
p&  = 0.00464 (period of 8.847 years) associated to the revolution of the mean lunar perigee. 
N&  =   (period of 18.613 years) corresponding to the retrograde revolution of the lunar node. 
 
As the mean solar and lunar times (t et τ) are linked to the sidereal time t' by the relation 

s+=h+t=t &&&&& τ′   
The solar terms will be expressed through the relation    hs+=t &&&& −τ   

The apparent motion of the Sun is expressed by 
h&  =  (period of 365.25 days) tropic year 
ps&  = (20,940 years) period of rotation of the perihelion of the terrestrial orbit. 

 
The Doodson variables are expressed as polynomial functions of the elapsed time, expressed in 
fraction of Julian century, since an initial epoch which is now J2000.0 corresponding to “Julian” 
date  2451545.0. The moment of the tidal prediction is thus converted in fraction of julian 
century since J2000.0. The amplitude of the main tidal terms is also changing slowly with time 
and since Tamura the main tidal constituents are given with a linear trend.    
Some care should be taken when computing the Doodson arguments. 
τ is not directly accessible but is computed by the relation 
τ = 15°.t + αm – s + λ 
where t is the hour in UT and αm is the right ascension of an fictitious object defining UT, and λ 
the longitude. The tidal prediction is thus expressed in UT at the point of longitude λ. 
αm replaces h because we want to use the “true” position of Moon and Sun and not the 
“apparent” one when we compute the hour angle α-αm of a celestial body of right ascension α. 
We consider thus that the gravitational attraction is acting instantaneously. The difference 
corresponds to the aberration term of 20”.5 i.e. a phase shift of 0°.01 for the semi-diurnal waves 
or, at mid latitude, a global error that can reach 0.25nms-2 or 10-4 of the tidal amplitude.  
One should use the dynamical time tD, which is a linear time scale, in all arguments except αm 
where the universal time tu is used. 
The universal time tu is not a linear time scale and in practice one uses the UTC which is a 
linear time scale periodically readjusted on tu. 
The difference between td and UTC is given by an initial offset plus the sum of all the “leap” 
seconds applied to UTC since its instauration. 
In the equation of τ  we have still to correct t for the residual difference between tu and UTC as 
the leap second jumps are already taken into account in  αm. This correction is always smaller 
than one second and will also affect the tidal prediction at the 10-4 level. 
Concerning the planetary influences, Tamura was the first to introduce tidal terms coming from 
Jupiter and Venus. 
Roosbeek and Hartmann-Wenzel introduced additional arguments for Mars, Mercury and 
Saturn to arrive to a total of 11 astronomic elements. 
 
2.1 The planetary terms in Tamura and Wenzel 
 
A direct comparison of the Tamura's formula with Wenzel ones  for the planetary terms is not 
easy as the two authors are not using the same arguments to define the Jupiter and Venus 
positions. 
Tamura argument f7 is referring to Jupiter's opposition and  f8 to Venus superior conjunction. 
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Wenzel argument k10 is the mean longitude of Jupiter and k8 the mean longitude of Venus. 
 It is easy to convert from one system to the other as 

f8 = 180° - (h - k8) 
and 

f7 = h - k10 
where h is the mean longitude of the sun. 
For Jupiter there is no difficulty but there is a contradiction for Venus 

From the first order expression in PREDICT with origin in JD 2451545.0 
h = 280°.47 + 360007.70*DTM 
k8 = 181°.98 + 585192.13*DTM 
we get 
f8 = 81°.51 + 225184.4*DTM 

In Tamura, 1987 we have  
f8 = 81°.5 + 22518.44*TD 
with DTM=TD/10 
We see that at the first order in TD the definition is identical. It should be noted that an initial 
phase of 180° is equivalent to a change of sign of the term. It will matter only for terms where 
the argument k8 is multiplied by an odd number. Among the few terms generated from Venus 
only term 984 has an odd argument (-1) for k8. Its sign should be changed with respect to 
original Tamura work, when the program PREDICT is used (Ducarme and Xi, 2006). 
 
2.2 Intercomparison of the softwares with a same tidal development 
 
Comparison of PREDICT and MT80Tw with TAM1200:  

 extrema –0.01/+0.02nms-2 (< 10-5 TR) 
       scale factor 0.9999869 
       RMS error 0.0028nms-2 

Comparison PREDICT and MT80Tw with CTE505 
extrema –0.15/+0.2nms-2 (< 10-4 TR) 

       scale factor 0.9998970 
       RMS error 0.0487nms-2 
Comparison PREDICT and MT80w with CTE505 

extrema –0.2/+0.4nms-2 (< 210-4 TR) 
       scale factor 1.0000030 
       RMS error 0.1610 nms-2 
 
2.3 Intercomparison of the tidal developments for a same software 
 
Comparison of HW95 and TAM1200 with PREDICT: 
      Extrema –0.4/+0.4nms-2 (< 210-4 TR) 
      scale factor 1.0000044 
      RMS error 0.0799nms-2 
Comparison of TAM1200 and CTE505 with  MT80Tw 
      Extrema –1.5/+1.5nms-2 (<7.10-4 TR) 
      scale factor 0.9996702 
      RMS error 0.3347 nms-2 
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2.4 Conclusions   
 
The programming with TAM1200 is perfectly equivalent in PREDICT and MT80Tw. Even the 
old versionMT80w referred to J1900.0 is still valid to much better than 10-3TR. 
If we consider that HW95 is the most precise tidal development we see clearly the reduction of 
the precision with TAM1200 at the level of 2.10-4TR (0.5nm/s2) and CTE505 at the level of  
7.10-4 TR (1.5nm/s2). 
The choice of the software and tidal development will thus depend of the required precision of 
the tidal gravity prediction around 10nms-2 for field work and better than 1nms-2 for absolute 
gravity measurements, for which special attention has to be paid to the LP part of the spectrum 
which can easily produce systematic errors. On the contrary for field differential measurements 
LP tides will cancel. 
 
3. Elastic response of the Earth (the Earth tides) 
 
Astronomical tides are only valid for a rigid Earth. For an elastic Earth it is necessary to take into 
account the deformation of the Earth and the additional change of potential induced by this 
deformation. For tidal gravity predictions this amplitude factor is called δ. The rigid Earth 
corresponds to δ = 1. The computations are made under the assumption that all the waves inside 
a tidal “group” have one and the same δ factor. Tidal groups are formed by the waves in the 
vicinity of  the main tidal constituents. The number and the limits of the groups are quite 
arbitrary for tidal prediction but for tidal analysis the Rayleigh criterion of commensurability of 
the periods on the time interval covered by the data set put constrains on the number of groups 
that one can consider. 
The fundamental tidal potential W2 is an harmonic function of degree 2. Doodson introduced 
already terms deriving from W3 and since Tamura the potential W4 is included. Each potential of 
degree n produces terms of order k with 0 ≤ k ≤ n. The order fixes the frequency of the 
corresponding harmonic terms i.e. the tidal “families”: 0 (LP), 1 (D), 2 (SD), 3 (TD), 4 
(QT),….As a consequence in the LP tides one can find terms coming from W2

0 , W3
0 , W4

0 ,… 
and in the ter-diurnal band terms from W3

3 , W4
3 ,… 

As the Earth response will be different for each degree and order, it will be necessary to carefully 
separate the different degrees in each tidal family. 
Finally attention should be paid to the fact that in the diurnal band the elastic response is not 
constant but that there exists a resonance, due to the liquid core (NDFW), close to the sidereal 
frequency, corresponding to wave K1. For gravity the response is diminished of 2% for K1 and 
increased by 10% on ψ1. This fact is indeed included in the models. 
Finally there is a permanent tide called M0S0 which requires a specific treatment. Tidal gravity 
corrections should apply the so called “zero tide” convention defined by IAG. It means that we 
can only correct the corresponding astronomical tide by applying a tidal factor equal to 1. This is 
automatically the case for the MT80 programs but for PREDICT and T-soft it is necessary to 
define a special tidal group M0S0 with δ =1 
We shall investigate three questions: 

- discrepancies between the different elastic models; 
- influence of the LP, D and SD terms associated with W3 and W4;  
- liquid core resonance 

 
3.1 Comparison of the Earth response models 
 
PREDICT is using latitude dependent tidal parameters for an elliptical, rotating, inelastic and 
oceanless Earth  computed from the Wahr-Dehant-Zschau model (Dehant, 1987). 
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MT80Tw can be used with the model DPREMZ, Wahr-Dehant-Zschau, Dehant, 1987) and the 
DDW, Dehant-Defraigne-Wahr (Dehant et al., 1999) models, either hydrostatic (HYDR) or non-
hydrostatic and inelastic(NHYDR). 
The comparisons are made with the TAM1200 potential. 
 
Comparison of NHYDR and HYDR: 
      Extrema –2./+1.nms-2 (< 10-3 TR) 
      scale factor 1.0015464 

RMS error 0.1718 
Comparison of NHYDR and DPREMZ 

Extrema –2./+1.nms-2 (< 10-3 TR) 
      scale factor 1.0014897 

RMS error 0.202 
Comparison of DPREMZ and HYDR  

Extrema –0.3./+0.4nms-2 (< 210-4 TR) 
      scale factor 1.0000565 

RMS error 0.1156 
The fit shows that the model NONHYDR differs significantly from the two others at the level of 
0.15%. After the fit the discrepancies are reduced to –0.5/+0.5nms-2. HYDR and DPREMZ are 
very close except for the LP tides , with δ = 1.157 for HYDR and δ = 1.154 for DPREMZ. 
 
3.2 Treatment of W3

k (0 ≤ k < 2) and W4
J (0 ≤ j < 3) terms 

 
These terms are very weak and, except for W4

3, are mixed up inside the main LP, D and SD 
groups. However their amplitude factors differ systematically from these of the W2 potential: 
δ2 ≅  1.155 (LP), 1.15 (D) outside the resonance or 1.16 (SD) while  δ3 ≅ 1.07 δ4 ≅ 1.04. 
The W4

3 terms will appear kept inside the ter-diurnal family. 
To take into account this systematic difference it is conventionally accepted to multiply these 
terms by the ratio δ3/δ2 or δ4/δ2 between the tidal factor corresponding to their harmonic 
degree and the tidal factor corresponding to the main wave of their group. For what concerns 
the elastic response of the Earth this procedure is indeed perfectly correct. 
Neglecting this correction will introduce systematic effects at the level of ±1.nms-2 (0.5 10-3 

TR) and a RMS error of 0.61nms-2. 
Due to oceanic loading the problem of the LP, D and SD terms deriving from W3 and W4, 
becomes also more complicated. The oceanic loading effects are much lower on these 
constituents than on the tides excited by W2. The analysis of the terms generated by W3

1 and 
W3

2 performed on the long records of superconducting gravimeters provided amplitude 
factors close to 1.07 and very small phase differences. Using as reference the modeled tidal 
factors δm, it is thus more correct to multiply the terms coming from W3,4

1 and W3,4
2 by 

δ3,4/δm. If observed tidal factors are available it is necessary to check how they were obtained. 
Most of the tidal analysis programs include a correction of the terms generated by W3

1 and 
W3

2. Their amplitude in the tidal potential is multiplied by the ratio δ3/δ2 or δ4/δ2. It is thus 
better to use the same normalization in the tidal prediction. A more correct procedure, used in 
the program VAV, is to treat these terms as a separate group mixed up inside the wave groups 
generated by W2

1 or W2
2. Then the observed tidal factors δobs are free from any influence of 

the W3,4 terms and it is better to apply in the tidal prediction the ratio δ3,4/δobs to the terms 
coming from W3,4

1 and W3,4
2.  
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For example a difference of 20% on the tidal amplitude factor of the SD waves used as 
reference to normalize the W3,4

1,2 will produce a peak to peak difference of 2.10-4TR   
(0.4nms-2). 
 
3.2 Influence of the NDFW in the diurnal band 
 
The liquid core resonance is taken into account in the different models of the Earth response 
to the tidal forces, but with slightly different resonance parameters. It is concentrated on π1, 
P1, K1 on one side of the resonance and ψ1 and ϕ1 on the other one. K1 amplitude factor is 
reduced of 2% and ψ1 is amplified of 10%. 
As a first comparison one can enter the same model  δ = 1 on all the waves 
Comparison of PREDICT and MT80Tw: 
      Extrema –0.1/+0.1nms-2 (< 0.5 10-4 TR) 
      scale factor 0.9999269 

RMS error 0.0518 
The differences are concentrated around ψ1 and are due to the fact that a different ratio δTD/ δD is 
used in PREDICT and MT80Tw. 
However generally for a tidal prediction we have only parameters for the main tidal groups i.e 
Q1, O1, P1, K1, N2, M2, S2, K2. In this case ψ1 and ϕ1 are mixed up with K1 and will receive the 
same tidal parameters as the main wave of this group. However due to the resonance the 
effective amplitude factor of  ψ1 is higher by more than 10% and 3% for ϕ1. It is thus useful to 
introduce the resonance by multiplying the amplitude inside by the theoretical resonance factors 
δψ1/δK1 or δϕ1/δK1. This correction is effectively implemented in PREDICT, T-soft and MT80Tw. 
Neglecting this correction will produce residues at the level of ±0.6nms-2 (3.10-4TD) and a RMS 
error of 0.322nms-2. 
The intercomparison of the results when the K1 group is not split but the theoretical resonance is 
introduced is given below. 
Comparison of PREDICT and T-soft 

Extrema –0.05/+0.05nms-2 (< 0.2 10-4 TR) 
      scale factor 0.9999899 

RMS error 0.0220 
Comparison of PREDICT and MT80Tw  

Extrema –0.2./+0.2nms-2 (< 10-4 TR) 
      scale factor 0.9999268 

RMS error 0.0518 
It is clear that PREDICT and T-soft are based on the same models and formula. However 
most of the remaining discrepancy is concentrated in the TD and QD bands, where on the 
contrary there is no power left in MT80Tw. MT80Tw and PREDICT agree within 10-4TD. 
Most of the discrepancy arises in the vicinity of ψ1 where the reference models for the 
resonance have a significant difference. 
 
3.3 Magnitude of the different effects 

Error  RMS 
    (nms-2) 

1. Choice of the elastic model   10-3TR  0.1 to 0.2 
 
2. Influence of W3 and W4 on LP, D and SD 5. 10-4TR 0.610 
 
3. Without considering resonance on ψ1  3. 10-4TR 0.322 
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residual effect on the difference between PREDICT and MT80Tw after correction of the 
effects 2 and 3, due to the discrepancy between the reference models used for the correction. 
 
Effects 2 & 3      1.010-4TR 0.085  
 
Effect 2 only       0.510-4TR 0.052 
 
The conclusion is that the programs PREDICT and MT80Tw agree at the level of 10-4TR for 
the computation of the gravity tides on an elastic Earth. 
 
 
4. Tidal gravity prediction on the real Earth 
 

The main problem for tidal gravity prediction is that the Earth tides are strongly 
perturbed by the influence of the oceanic tides which modify the tidal parameters distribution 
at the surface of the Earth. The oceanic tides produce a direct attraction due to the moving 
water masses, a flexure of the crust and an additional change of the potential due to the mass 
redistribution. 
The ocean tides models of the main tidal constituents are given over a grid and each cell is 
characterized by its amplitude and phase. The tidal loading is evaluated according to a 
convolution of the ocean tide model with the Green’s functions derived by Farrell (Farrell, 
1972). The result called the load vector L(L,λ) , where λ characterize the phase difference 
between the oceanic effect an the Earth tides vector for each wave (Figure 1). It is also 
possible to compute the equivalent tidal parameters δm, αm that will be introduced in the tidal 
prediction program: A m(δm.Atheo, αm) = R(R,0) + L(L,λ), with the notations of Fig. 1. 

 The effect can reach up to 10% of the Earth body tides, but is generally at the level of 
a few percent. The uncertainties and contradictions between different ocean tides models are 
such that the dispersion of the corresponding modeled tidal parameters δm, αm is generally at 
the level of a few tenths of a per cent. In coastal areas it can easily exceed 1%. To 
demonstrate it we computed modeled tidal factors using 9 different ocean tides models 
(SCW80, ORI96, CSR3, CSR4, FES95, FES02, NAO99, GOT00 and TPX06). The standard 
deviation on the amplitude factors σδ and the phase differences σα is given in the table 1 for 
three regions: Siberia between 83° and 143° east longitude, Atlantic coast of France, Southern 
and Eastern Europe.  
From Table 1 it is clearly seen that the standard deviation of one model is lower than 0.15% 
on the diurnal waves.  
In the semi-diurnal band the standard deviation is lower than 0.2% inside Siberia and slightly 
larger close to the Pacific coast. The standard deviation is the same on the in phase and out of 
phase components and thus in amplitude and phase. In West Europe stations located at 100km 
from the Atlantic coast of France have standard deviations close to 1% for the out of phase 
component and thus on the phase. For Mordelles, located in Britanny, the errors are even 
larger than 1% on both components. For Etna which is far from the Atlantic Ocean the 
standard deviation is lower than 0.15%. It is clear that the use of the mean of the 9 models 
will be affected by a RMS error three times lower. It should be necessary to study 
systematically all the continents in order to identify areas where the contradiction between 
models are larger. In these regions some models are probably more suitable. For example 
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along the Atlantic coast of France, Timofeev et al. (2006) recommend the use of CSR3, CSR4 
or FES02 on the basis of tidal gravity observations. 
 
Table 1: standard deviation of the tidal factors modelled by 9 different ocean tides models  
 

STATION O1 K1 M2 
 σδ σα σδ σα σδ σα 
Novosibirsk 0.00112 0.049° 0.00096 0.045° 0.00180 0.094° 
Talaya 0.00100 0.068° 0.00083 0.036° 0.00151 0.076° 
Khabarovsk 0.00139 0.095° 0.00078 0.039° 0.00157 0.101° 
Y.Sakhalinsk 0.00121 0.095° 0.00057 0.058° 0.00230 0.120° 
   
Menesplet (F) 0.00115 0.068° 0.00186 0.404° 
Chize (F) 0.00116 0.067° 0.00212 0.357° 
Mordelles (F) 0.00141 0.077° 0.01194 0.776° 
   
Etna 0.00128 0.065° 0.00117 0.073° 0.00136 0.068° 
Pecny (9 maps) 0.00099 0.047° 0.00099 0.055° 0.00168 0.042° 
           (8 maps) 0.00084 0.022° 

 
We can expect that, except in very unfavorable conditions, the standard deviation of the 
modeled tidal factors is at the level of 0.2%. The use of the mean of several models will 
increase the precision up to 0.1%. 
If we take into account the disagreement between the different models of the elastic response 
of the Earth at the 0.1% level, we obtain an error budget close to 0.15% of the TR.  

A better solution is indeed to perform tidal gravity observations to determine the 
quantities δobs, αobs. However the calibration of the best instruments are also questionable at 
the level of 0.1% and very often calibration errors still exists at the level of 0.2%, even in the 
GGP network (Ducarme et al., 2002). Moreover to be able to separate the main tidal 
components a minimum of six months to one year of observations is required. 
To summarize, without special care, it is very difficult to ensure an accuracy better the 0.2% 
of the TR.  
 
5. Conclusions 
 
It is rather easy to insure an accuracy of 1nm/s2 for the prediction of the astronomical tides 
and all the tested software can achieve it.  
For an elastic Earth, it is essential to introduce the effect of the liquid core resonance (0.03%) 
on one hand and the difference of elastic response for the terms deriving from the potentials 
of degree 3 and 4 (0.05%) on the other hand. These errors can be corrected with a precision 
better than 0.01%. However there are still discrepancies at the level of 0.1% between Earth 
models, according to the underlying hypotheses, such as hydrostatic or non-hydrostatic, 
elastic or anelastic. 
On the real Earth the main perturbation is the ocean tides loading and attraction effect. Using 
the most recent ocean tides models and avoiding coastal areas, one can expect a precision of 
0.1% of the tidal loading computations. Keeping in mind the two main error sources (Earth 
response and ocean loading) we reach an error budget of 0.15% of the TR, as a minimum. It is 
a reason why accurate tidal gravity observations can still be useful. However a determination 
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of the tidal parameters is difficult to achieve with accuracy better than 0.2% and the 0.1% 
level is exceptional (Francis, 1997; Palinkas, 2006). 
For the while an accuracy of 0.2% of TR seems to be accessible either by direct observation 
of the tidal parameters or by modeling of the ocean tides loading and attraction effects. 
 
 

 

Fig. 1: Relationship between the observed tidal amplitude vector A(A,α), the Earth model R(Atheoδtheo,0), the 
computed ocean tides load vector L(L,λ), the tidal residue B(B,β) and the corrected residue X(X,χ): 

)0,(),(),( obstheo RAB RAB −αδ=β  

X(X,χ) = B(B,β) - L(L,λ) 

theoA   is the astronomical tidal amplitude, δobs is the observed tidal amplitude factor, α  is the observed phase 
difference. 
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