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Abstract

A stacking method, which is referred as folding-averaging algorithm (FAA) in this paper, was frequently used for
evaluating discrete Fourier transform (DFT) before the fast Fourier transform (FFT) technique was conceived. In this
paper, we reformulate the FAA to precisely determine periods of signals which may be present in a time series. The
basic principle of the FAA is to rebuild for every test period a new short time series by cutting the original time series
to shorter ones of which the length is equal to the test period (at the end of the time series, a small fraction shorter
than the test period may be discarded), and then stacking the short time series by averaging. In this stacking process
of averaging, the amplitude of the possible signal with a period equal to the test period remains the same, but signals
of different periods are averaged out and the random error is reduced. Amplitude and phase of the possible signal
with a period equal to the test period can then be estimated using the averaged short time series. By searching for the
maximum extremes of the amplitude by varying the test period, the periods of the signals which may be present in the
time series can be very precisely determined. The FAA is distinct from DFT as follows: in FAA, periods of possible
real physical signals in the time series are sought; but in DFT, sinusoidal functions with prescribed periods which are
submultiples of the length of the time series are used to represent the time series exactly. The usefulness of the FAA
is illustrated by applying it to determine the periods of the Earth’s free oscillations using superconducting gravimeter
(SG) data after the Peruvian Earthquake of magnitude 8.4 in 2001.

keywords: Time series; Folding-averaging algorithm; Period determination; Earth’s free oscillation; superconducting
gravimeter observation

1 Introduction

Retrieving periodical signals buried in a time series has been a topics heavily investigated in many branches of science,
notably geophysics. Undoubtedly, the most well known method used nowadays in time series analysis is the DFT, or
called FFT as a fast evaluation version. Having an inverse transform, the DFT gives exact representations of a time
series using sinusoidal functions of which the periods are submultiples of the length of the time series. But in real
physical problems, the period of a signal depends on its physical cause other than the length of observation, and hence,
is not necessarily equal to a certain submultiple of the length of the time series obtained from observation. From this
point of view, the DFT is not really relevant in determining periods of real physical signals in time series. A remedy
to this weakness is to fit the Fourier spectrum around a peak with a resonance function (Bolt and Brillinger, 1979;
Dahlen, 1982; Masters and Gilbert, 1983).

Unlike DFT, as can be seen from the process of constructing the averaged short time series stated in the abstract, the
FAA is designed for searching for periods of real physical signals in time series other than giving exact representations
of time series using prescribed periodical functions. For example, assume that a sinusoidal signal with a period of
0.985 hour is present in a time series of100 hours. When using DFT to analyze this time series, the periods of
sinusoidal waves we obtain nearest to0.985 are100/102 ≈ 0.98 and100/101 ≈ 0.99. But when using the FAA for
searching for periods of signals, a test period may be chosen as close to0.985 as possible by increasing the density
of test periods in the search. The precision of the period finally found depends on the sampling interval as well as
the error of observation. Problems of precision will be discussed in the next section together with the FAA it self.
Here we only point out that, if there is only one sinusoidal signal in a time series and there is no observation error, the
precision of the period obtained for the signal is about2(T/LTS)∆t, whereT is the period of the sinusoidal wave,
LTS is the length of the time series, and∆t is the sampling interval. For the above numerical example, if the sampling
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interval is0.1 hour, the precision of the period obtained according to this criteria should be about0.002 hour that is
more accurate than that given by the DFT. See the next section for more discussion on the comparison between the
FAA and the DFT and FFT.

The FAA was frequently used for evaluating DFT before the invention of FFT (e.g. Bartels, 1935). It was also
used for studying periodical phenomena of which the periods are not submultiples of the time series, such as for
example, variation of geomagnetic filed (Bartels, 1935; Pollak, 1930) and tides (Darwin’s method of tidal analysis,
see Melchior (1978) for example). As the FFT become so popular soon after its invention, the FAA is no longer much
emphasized in modern literatures since then. Recently, a slight variant of it was also used to detect nonharmonic
periodicities in biology (the linear stacking method of Hoenen el al. (2001)). In this work we propose to use FAA for
precisely determining periods of harmonic signals by intensive search, since periods are required to be determined as
precisely as possible in various problems, such as for example, the free oscillation of the Earth. Illustrative example
of numerical computation is made for determining some periods of the Earth’s free oscillation using a time series of
gravity observed by the SG of GeoForschungsZentrum Potsdam (GFZ) installed in Sutherland, South Africa after the
2001 Peruvian Earthquake. A review on the study of the Earth’s free oscillation using the worldwide network of SGs
in the frame of Global Geodynamics Project (GGP) was given recently by Widmer-Schnidrig (2003).

In fact, the intensive search of periods based on the FAA requires a lot of computation. However, this is not a
problem nowadays due to the advance in digital computers.

Another method which is closely related to the FAA is the phasor-walkout method, also known as graphical Fourier
transform, summation dial, complex demodulation (Bartels, 1935; Bolt and Brillinger, 1979; Zürn and Rydelek, 1994).
This method is particularly suitable for testing if a certain periodicity exists in a time series (Bolt and Brillinger, 1979;
Zürn and Rydelek, 1994), though it can be used to search for periods precisely as well. The FAA can be considered
as a variant of the phasor-walkout method for searching for periodicities with some approximation in amplitude and
phase in favor of quick evaluation. More explanation on their relation will be given in next section.

Based on our analysis and numerical test, we recommend the FAA, which has a fairly simple algorithm, as an
alternative method, among other methods being used, for example, the autoregressive method (e.g. Chao and Gilbert,
1980) and its variant, the Sompi method (e.g. Hori et al., 1989), the method of fitting a resonance function to the
Fourier spectrum (Bolt and Brillinger, 1979; Dahlen, 1982; Masters and Gilbert, 1983), the interpolated FFT (IFFT)
method, the iterative phase average (IWPA) method and the ESPRIT method (e.g. Santamarı́a et al., 2000) etc, for
retrieving periodical signals from time series, and determining their periods with high accuracy. It is expected that it
would find additional applications in geophysics.

2 The folding-averaging algorithm

For identifying possible sinusoidal signals in a time series, an amplitude spectrum is to be built. The basic principle
is to estimate, for every one of an array of preassumed test periods, the amplitude and phase using the FAA. This
section is divided into two subsections. The first one explains how to estimate the amplitude and phase of a signal
with known period. The second one explains how to build the amplitude spectrum and accurately estimate the periods
of the possible signals.

We make two assumptions on the time series: (1) the length of the times series is at least as long as tens or hundreds
of the periods of the signals to be studied, (2) the sampling interval is at least as short as a tenth of the periods of the
signals to be studied. These assumptions are fulfilled in numerous cases in contemporary geophysical researches.

2.1 Estimation of amplitude and phase of a signal with known period

Assume that a signal with known periodT is present in the time series being analyzed and we are estimating the
amplitude and phase of the signal.

First of all we analyze an ideal case that the sampling interval∆t can divide the periodT exactly, i.e., the number
of observation data in every period,(T/∆t), is integral. We denote withV0, V1, V2, · · · the data in the original time
series sampled at equally spaced timet = 0, ∆t, 2∆t, · · ·. Denote withM the number of short time series, each of
them havingNs = (T/∆t) data (the length of the test period), that can be cut from the original time series, discarding
a small fraction shorter than the test period at the end of the original time series if exists. Arrange the short time series
row by row as shown in Table 1. The averaged short time seriesR̄0, R̄1, · · · R̄Ns−1 is then obtained by averaging
every column of the table,

R̄j =
1
M

M−1∑

k=0

Vk(T/∆t)+j , (1)

as the values of the signal in all elements of the same column are the same.
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Table 1: Short time series row by row
V0 V1 · · · VNs−1

V(T/∆t) V(T/∆t)+1 · · · V(T/∆t)+Ns−1

...
...

...
...

V(M−1)(T/∆t) V(M−1)(T/∆t)+1 · · · V(M−1)(T/∆t)+Ns−1

We remark that (1) may be modified to take into account missing data or gaps in the time series by averaging only
the data present (excluding the missing data in the sum, and replacingM by M minus the number of missing data).

In Table 1, we have not written the subscript of the first data in the short times series,k(T/∆t), k = 0, 1, · · · ,M−
1, askNs, because they will be different in the case whenT/∆t is not an integral number discussed later.

As the length of the times series is assumed to be much longer than the period of the signal,M is very large. Thus,
in the averaging process, signals with different periods other thanT is practically averaged out. (In fact, signals of
which the periods are submultiples ofT remain in the averaged short time series. This problem will be discussed later.
Now we simply assume such case does not appear.)

The random error in the averaged short time series is much less than that in the original time series. Denote the
root mean square error of the observations in the original time series withσ. The root mean square error of the average
values in the short time series is then

m = σ/
√

M − 1 (2)

By assumption,M is very large. If we haveM = 100, the signal to noise ratio of the averaged short time series is
theoretically about10 times of the original time series. If we haveM = 10000, this value raises to100.

As signals with different periods are averaged out, and the signal to noise ratio is drastically enhanced, the averaged
short time series should be in fact almost a sinusoidal curve, as indicated by numerical examples in the next section.

The amplitude and phase can be estimated using the averaged short time series, of which the signal to noise ratio
is assumed to be raised to reasonable level. Express the signal as

s(t) = a sin[(2π/T )t + φ] (3)

which is the same form for the original as well as the averaged short time series. The basic relations for determining
amplitude and phase are ∫ T

0

s(t)
{

sin
cos

}
[(2π/T )t]dt =

T

2
a

{
cos
sin

}
φ . (4)

As the sampling interval is assumed much shorter than the period of the signal, we can evaluate the integral in the above
equation numerically using the left Riemann sum (which is identical to the Trapezoid sums due to the periodicity),
replacing the discrete values ofs, s(k∆t), with R̄k, to obtain estimates fora cosφ anda sin φ:

a

{
cos
sin

}
φ =

2
T

∆t

Ns−1∑

k=0

R̄k

{
sin
cos

}
[(2π/T )(k∆t)] . (5)

Estimates of amplitude and phase can then be computed according to

a =
√

(a sinφ)2 + (a cos φ)2 , φ = atan2(a sin φ, a cos φ) (6)

where the functionatan2(x, y) is provided in practically all programming languages.
In the above formulation, we assumed that the sampling interval∆t divides the periodT exactly, i.e., the number

of observation data in every period,(T/∆t), is integral. But in practice, this rarely happens. As a result, we abandon
this assumption. In the more general situation, the expressionsNs = T/∆t andk(T/∆t), k = 0, · · · ,M − 1, in
the subscripts of data in the short time series listed in Table 1 and equation (1) are no longer integral. Like Darwin’s
method of tidal analysis (e.g. Melchior, 1978), we replaceNs = T/∆t andk(T/∆t) with the integers closest to them,
and still build the averaged short time series according to equation (1). We see that the values of the signal in the
elements of the same column in Table 1 are no longer the same, but shifted in phase. Fortunately, the phase shifts
between the corresponding elements of any two rows (each row is a short time series) are the same. Hence, in the
averaged short time series, this phase shift does not influence the period, but only influences the estimates of amplitude
and phase. As we assumed that the sampling interval is much smaller than the period of the signal, the phase shift is
small, and thus its influences on the estimates of amplitude and phase are also small. The level of this influence will
be formulated in the next subsection.

Finally, we discuss the relation between the FAA and the phasor walkout method. In the phasor walkout method,
the expression

∑N−1
k=0 Vk exp{−i(2π/T )k∆t} is evaluated graphically for any test periodT , whereN is the total
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number of data in the original time series, andi =
√−1 (e.g. Z̈urn and Rydelek, 1994). It can be readily seen that the

same expression is evaluated in the FAA outlined above (apart from a common multiplier and the approximation due
to the small phase shifts in the FAA), but expressed in terms of amplitude and phase (e.g. Bartels, 1935).

2.2 Amplitude spectrum and accurate determination of periods

Now we assume that sinusoidal signals exist in a time series, but the periods are not known, and the study is intended
to identify the periods.

We begin by analyzing the signature of a sinusoidal signal, of which the exact value of periodTE is not know, in
the averaged short time series built with a test periodT . We denote with∆T the difference betweenT andTE , so
that

T = TE + ∆T . (7)

The formula of the signal is the same as (3), but withT replaced byTE . For clarity, we rewrite it out:

s(t) = a sin[(2π/TE)t + φ] . (8)

Evidently, the signature of this signal in the averaged valueR̄j given by equation (1) is

s̄j =
1
M

M−1∑

k=0

a sin{(2π/TE)[k(T/∆t) + j]∆t + φ} (9)

which can be further written as

s̄j =
1
M

M−1∑

k=0

a sin[(2π/TE)(j∆t + k∆T ) + φ] . (10)

We see that̄sj is the average of the values of the sinusoidal signal atM nodes equally spaced by∆T : j∆t, j∆t +
∆T, · · · , j∆t + (M − 1)∆T . When∆T is very small as compared toTE , it can also be understood as the average
value of the signal in the interval between the epochsj∆t andj∆t + M∆T . There are two possibilities for the result
of (10).

1. According to (10), the values of the signal at all of theM nodes are equal to its value att = j∆t when
∆T = 0, TE , 2TE , · · ·. Hence, the value of̄sj is also equal to the value of the signal att = j∆t. So, if a
signal with a periodTE is present in the time series, and if we have built the average short time series for test
periodsT = TE , 2TE , · · ·, all the averaged short time series contains the signal. Reversely, this means that, in
the averaged short time series built with a test periodT , there may be a signals with periodsT, T/2, T/3, · · ·.
But when we use (5) and (6) to estimate amplitude and phase, the results obtained are just of those of the signal
with periodT , the signals with periodsT/2, T/3, · · · have no contribution to the results, a direct consequence
of the orthogonality of the trigonometric functions.

2. Otherwise,s̄j → 0 whenM → ∞. This result is a consequence of the fact that the average of a sinusoidal
signal in any time interval equal to its period is equal to zero. In practice,M is always a finite number. and hence
s̄j can not really vanish. According to what was stated below (10), we see thats̄j does vanish whenM∆T =
TE , 2TE , · · ·. So in the spectrum built, small sidelobes appear around the highest central peak representing the
signal, the larger isM , the smaller the sidelobes.

Based on the above properties, we can design a process for searching for periods of possible signals: estimating
the amplitudea according to (5) and (6) for an array of test periodT : T0, T1 = T0 + dT0, T2 = T1 + dT1, · · ·, the
periods of possible signals are the one which have maximum extreme values ofa. But we have to answer another
question: what are the favorite values ofdT0, dT1, · · · in the computation? If the values ofdT0, dT1, · · · are too large,
we may not see the maximum extreme of the estimate ofa at all. The choice ofdT0, dT1, · · · depends on the accuracy
we expect. Take reference to (10) again. IfTE is in a interval[Tk, Tk+1], for the estimate ofa at Tk or Tk+1 to be
significantly distinguishable as nearly maximum extreme,∆T = Tk+1−TE or ∆T = Tk−TE must be small enough
in magnitude. We see that the absolute values of either∆T = Tk+1 − TE or ∆T = Tk − TE should be smaller than
dTk/2. So, in the search of signals, we chooseMdTk/2 ≥ M∆T to be only a small portion ofTk (or Tk+1). The
smaller this value is, the clearer the maximum extreme we see. We choseMdTk/2 to be only onen-th of Tk, whence

dTk = 2Tk/(nM) . (11)

This implies that̄sj given in (10) is the average of the value of the signal atM equally spaced nodes in a interval
of which the length is at maximum onen-th of the test period (see the analysis below equation (10)). The practical
computation for the search of signals and accurate determination of periods is done in two steps:
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1. Build a less accurate amplitude spectrum by choosingn to be moderately large, for example, between4 to 16.
Peaks in the spectrum may represent signals;

2. Pick out the peaks and search intensively for the maximum extremes of the amplitude near the peaks by setting
n to its maximum meaningful value to be discussed below.

For any signal with a periodTE , we can not expect thatTE/∆t be integral. Thus the approximation by phase shifting
as mentioned in the last subsection should always be assumed. So, making the intervalM∆T ≤ MdTk/2 smaller
than the the possible unavoidable phase shift is meaningless. The phase shifts may be as large as∆t/2 to both the
left and right sides. So the smallest meaningful value forMdTk/2 is ∆t. This implies that the maximum theoretical
resolution for period isdTk = 2∆t/M , which is approximately2(Tk/LTS)∆t as mentioned in the introduction, asM
is approximatelyLTS/Tk. The value forn is thenTk/∆t. This ideal resolution may be achieved only under the ideal
situation that only one signal is present in the times series and there is no error of observation. This is certainly not the
case in practice. Unfortunately, we can not give an adequate estimate of error in the periods found using this method,
just the same as the phasor walkout method (Zürn and Rydelek, 1994). The issue of precision will be discussed later.
The interval of period in which signals are sought is chosen based on our a-priori knowledge on the problem studied.

The estimates of phase and amplitude using the FAA are not those of the original time series, but of the averaged
short time series. In this paragraph we study the differences between the phase and amplitude of the original time
series and the averaged short time series. These differences represent the minimum errors of the estimates using the
FAA. We know from the statement after (10) that the value of the averaged short time series at epochj∆t, s̄j , can be
understood as the average of the real signal between the epochsj∆t andj∆t + M∆T , where∆T is the difference
between the test periodT and the real period of the signalTE defined in (7). Now we assume thats̄j is the value of a
sinusoidal curvēs(t) at the epocht = j∆t. According to the FAA,̄s(t) is the approximation of the signals(t), and
s̄(t) can be understood as the average ofs(t) in the interval between the epochst andt + M∆T . According to this
relation, we can analyze the signature of the phase and amplitude ofs(t) in s̄(t). We assumes(t) attains its maximum
extremea att = tm, i.e. (2π/TE)tm+φ = π/2. It can then be seen thats̄(t) attains its maximum extreme at the epoch
t = tm−M∆T/2, since at this epoch̄s(t) is the average ofs(t) in the interval between the epochstm−M∆T/2 and
tm + M∆T/2 containingtm as midpoint. So the phase ofs̄(t), φ̄, is (2π/TE)(M∆T/2) = πM∆T/TE in advance
(as the maximum arrives earlier) compared to that ofs(t), i.e.

φ̄ = φ + πM∆T/TE . (12)

The amplitude of̄s(t), ā, is the maximum extreme of̄s(t) which can be obtained to be

ā = [(aTE)/(πM∆T )] sin[(2π/TE)(M∆T/2)] . (13)

These relations of phase and amplitude can be used to estimate errors of phase and amplitude of the signals obtained
using the FAA.

Now we turn to analyze the errors of amplitude and phase of a real signal in the FAA spectrum. Imagine thatTE

falls in between the test periodsTk andTk+1. The estimate of period is thenTk or Tk+1 depending on to which one
TE is closer, and∆T = Tk − TE at Tk, ∆T = Tk+1 − TE at Tk+1. The phase and amplitude ofs̄(t) are, according
to (12) and (13),

φ̄k = φ + πM(Tk − TE)/TE , (14)

āk =
aTE

πM(Tk − TE)
sin

{( 2π

TE

)[M(Tk − TE)
2

]}
(15)

atTk, and
φ̄k+1 = φ + πM(Tk+1 − TE)/TE , (16)

āk+1 =
aTE

πM(Tk+1 − TE)
sin

{( 2π

TE

)[M(Tk+1 − TE)
2

]}
(17)

atTk+1. NoticingTk ≤ TE ≤ Tk+1, wee see that the estimate of phase is in backward atTk, and in advance atTk+1

as compared to that of the signals(t). Consider the worst situation thatTE is at the midpoint betweenTk andTk+1,
i.e. Tk − TE = −dTk/2, Tk+1 − TE = dTk/2. Then, by using (11), we see that the phase and amplitude are

φ̄k = φ− (2π/TE)[Tk/(2n)] , (18)

āk = {(aTE)/[πTk/n]} sin{(2π/TE)[Tk/(2n)]} (19)

atTk, and
φ̄k+1 = φ + (2π/TE)[Tk/(2n)] , (20)
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āk+1 = {(aTE)/[πTk/n]} sin{(2π/TE)[Tk/(2n)]} (21)

atTk+1. In (18) to (21), settingTk = TE gives good approximations. So we have

φ̄k = φ− π/n , (22)

āk = (na/π) sin(π/n) (23)

atTk, and
φ̄k+1 = φ + π/n , (24)

āk+1 = (na/π) sin(π/n) (25)

atTk+1. These relations give the differences betweena andā, andφ andφ̄, which represent the highest precision in the
estimates using FAA for any chosen value ofn. This precision may be attained only at the extremely ideal situation:
only one signal is present in the time series, and the observation is error free, just like the situation for attaining the
maximum precision for period. One can easily estimate the precision when highest resolution in period is made by
settingn = Tk/∆t.

In practice, the time series may be more complicated. For example, it may contain linear tendency which perturbs
the estimate ofa and makes it unclear as maximum extreme at the periodTE . In the averaged short time series,
residuals form signals of longer periods not cancelled by averaging are also similar to linear tendency, or even like a
quadratic curve. So, it is preferable that signals outside the interval of interest be filtered out before using the FAA.

For having more accurate estimates ofa andφ, or for having error estimates for them, instead of using (5) and (6),
a least square fit of the averaged short time series by a sinusoidal curve with the period found may be used. This may
be done either by using the cosiner algorithm (Nelson et al., 1979) or by linearizing the problem using the estimates
of a andφ according to (5) and (6) as initial guess. A linear, and even a quadratic curve, may be combined with
the sinusoidal curve for reducing the errors of estimates. Nevertheless, the error estimates represent the misfit to the
averaged short time series, but not the original time series, as already discussed.

The same as the phasor walkout method (Zürn and Rydelek, 1994), we can not give adequate estimates of errors
in the periods found using this method, which is already mentioned earlier in the text. In this work we propose to use
an indirect method to infer errors in the estimates of periods. First, we do the analysis for the time series. Second,
according to the periods, amplitudes and phase of the signals found, we add into the time series some synthetic signals
which are similar to the signals found in the first step, but with periods slightly shifted for not overlapping with the
signals. And third, redo the analysis for the time series containing the synthetic signals. For the synthetic signals,
as the exact values of their periods, amplitudes and phases are known, the absolute errors of their estimates may be
determined. These absolute errors of the estimates of the synthetic signals can then serve as a good reference of errors
for the estimates of the real signals.

2.3 Relation with the DFT and the FFT with zero padding

First we discuss the relation between the FAA and the DFT. In the DFT, the coefficients of the complex fourier series
of the time series are(1/N)

∑N−1
j=0 Vj exp{−i(2π/Tk)j∆t}, whereN is the total number of data in the time series,

i =
√−1 andTk = LTS/k. This is the same as the FAA ifTk = LTS/k is chosen as the test period (notice that

we used the amplitudes and phases of the sine functions in the FAA). So, if we chose· · · , LTS/3, LTS/2, LTS, i.e.
the periods of the sinusoidal functions used in DFT, as test periods for the FAA, the FAA spectrum is identical to the
DFT spectrum (apart from the approximation due to the small phase shifts in the FAA). So their difference lies on the
differences of nodes of periods of the spectrums built using the two methods respectively. The nodes of periods of the
FAA spectrum was given by (11) which may be made as dense as one want by choosing the value ofn large enough,
without exceeding the limit of maximum resolution as discussed before. For the DFT spectrum, the nodes of periods
are submultiples of the length of the time series. Hence, at any nodeT = LTS/k, the step to the next node is

dT = LTS/(k − 1)− LTS/k = T/(k − 1) . (26)

Notice that the meaning ofk is similar to that ofM in (11), i.e. the number of periods in the times series. So, whenk
or M is large, and whenn in (11) is set to 2 for the FAA, the distances between two nodes for the DFT spectrum is the
same order of magnitude as that of the FAA spectrum at comparable nodal periods in the two spectra. However, Even
whenn in (11) is set to 2 for the FAA, the nodal periods of the DFT and FAA spectrums are not necessarily equal
because the choice of test periods for the FAA is not unique like DFT. Thus we conclude that, when the value ofn in
(11) is set to 2, the FAA gives a spectrum with practically the same resolution of period as the DFT. The precision of
phase and amplitude of the FAA discussed above also applies to DFT by settingn = 2. So, according to (22) to (25),
we can also conclude that, the largest possible errors in the estimates of phase and amplitude in DFT may attainπ/2
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and[(π − 2)/π]a = 0.36a even if the observation is error free. This represent in fact the DFT precision in phase and
amplitude, whiledT/2 = T/[2(k − 1)] represents the DFT precision in period.

Since its invention, the FFT has being used extensively to evaluate the DFT. Here, for illustrative purpose, we
assume without loosing generality that the FFT requires the total number of data in a time series to be power of 2
(though this is not a prerequisite of the FFT). If the criteria is not satisfied, zeros are customarily added by the end
of the time series to the length required, called zero padding. Now we continue to useN to denote the total number
of data in the original times series, and to useN ′ to denote the total number of data (that is power of 2) after zero
padding, i.e.N ′ − N zeros are added to end of the original time series. In the FFT, the coefficients of the complex

fourier series of the zero-padded time series are(1/N ′)
∑N ′−1

j=0 Vj exp{−i(2π/Tk)j∆t}, whereTk = L′TS/k, L′TS

being the length of the zero-padded time series. Remembering thatVj is equal to zero whenN ≤ j < N ′, we can
readily see that, if we chose· · · , L′TS/3, L′TS/2, L′TS, i.e. the periods of the sine functions used in the FFT, as test
periods for the FAA, the FAA spectrum is identical to the FFT spectrum multiplied with the factorN ′/N (apart from
the approximation due to the small phase shifts in the FAA). So, the same as the FAA, the FFT can also be used to
build spectrums with high resolution of period of signals by padding the time series with a lot of zeros (Santamarı́a et
al., 2000). But the FAA is superior for accurate determination of the periods of the signals by extensive search near
the peaks of the spectrums built (the second step of accurate determination of periods stated in the last subsection),
since achieving the highest resolution that the FAA can attain using the FFT requires a huge amount of computation
(though possible).

Due to the above relation of the FAA to the DFT and FFT, we can apply tapers to the FAA in the same way as to
the DFT and FFT.

3 Application for the determination of the periods of the Earth’s free oscil-
lation using SG data

In this section we apply the FAA to estimate some periods of the Earth’s free oscillation using SG data. The objective is
to demonstrate the applicability of the FAA. The detail of the subject itself on the study of the Earth’s free oscillations
using the worldwide network of SGs in the frame of GGP is referred to the recent review by Widmer-Schnidrig (2003).

A property of the Earth’s free oscillations, the decay, was not considered in the last section in building the FAA. A
decaying sinusoidal signal can be written as (Zürn and Rydelek, 1994)

s(t) = a exp{−[π/(QT )]t} sin[(2π/T )t + φ] (27)

whereQ is the quality factor. It is straightforward to redo the formulation in the last section while replacing (3) with
this signal. The main characteristics of the conclusion may be inferred by inspection. As the decaying factors of the
signal of periodT in all the short time series in Table 1 are the same, they can be safely averaged, obtaining as result an
averaged short time series which contains mainly this signal. But the amplitude of the signal in the averaged short time
series is the average all over the original time series. We have also attempted to recover the quality factor by fitting the
averaged short time series with the decaying signal. This seams impossible because the difference in amplitude in one
cycle is too small as the quality factorQ is large in general. There are spectral analysis methods specifically conceived
for retrieving decaying signals like the Earth’s free oscillation (e.g. Bolt and Brillinger, 1979; Chao and Gilbert, 1980;
Dahlen, 1982; Masters and Gilbert, 1983; Lindberg and Park, 1987; Park et al., 1987; Hori et al., 1989). The FAA
is understood as an independent method for period determination. For determining periods of decaying signals, we
cannot use too long time series, since, when the amplitude of the signal become too small, using more data implies
adding more noise. Dahlen (1982) recommended that the length of the time series beQ cycles of the signal to be
recovered.

The main Peru Earthquake of magnitude 8.4 occurred on 20:33:14 UTC, 23 June, 2001. Aftershocks of magnitudes
6.7, 6.6 and 7.6 occurred on 04:18:31 UTC, 26 June, 13:53:48 UTC, 5 July and 09:38:43 UTC, 7 July, respectively.
The gravity time series is sampled at 5 seconds interval, which is first filtered using the least squares band pass filter
of TSoft provided by the Royal Observatory of Belgium (http://www.observatoire.be/SEISMO/TSOFT/tsoft.html), to
retain signals only between 0.15 to 2 mHz. Then the air pressure effect is corrected using a frequency dependent
method (e.g. Neumeyer, 1995), as this effect may be important for the low frequency or long period free oscillation
band (Van Camp, 1999; Z̈urn and Widmer, 1995). Therefore the 5 sec air pressure data is filtered the same way, and a
transfer function between the air pressure and gravity data is calculated using blocks of length 12 hours. This transfer
function is multiplied to the Fourier spectrum of the air pressure data which is then subtracted from the gravity data
Fourier spectrum. The corrected gravity data are finally received using the inverse Fourier transformation. We do see
significant improvement of signal to noise ratio under 1.3 mHz. The time series finally used in this study after filtering
and air pressure correction is from 08:00:00 UTC on June 24 to 02:00:00 UTC on July 4, its length being 234 hours.
Based on a visual inspection of the spectra built using the data of various time spans, the noise level has the lowest
noise level.
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Table 2: Synthetic signals added into the time series. The will serve as a tool to estimate the precision of the estimates
of periods by comparing the assigned and estimated values of them.
Mode Period Initial amplitude Quality factor Initial phase

s nm s−2

0W0 1303.000 0.0047 5700 1.0
1W0 596.000 0.0026 1800 2.0

0W
−2
2 2942.000 0.0024 500 2.0

0W
−1
2 2902.000 0.0013 500 1.0

0W
0
2 2864.000 0.0002 500 0.0

0W
1
2 2826.000 0.0030 500 -1.0

0W
2
2 2792.000 0.0018 500 -2.0

0 50 100 150 200 250

Time (h)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

A
m

pl
itu

de
 (

nm
 s

-2
)

Figure 1: The Sutherland SG gravity time series after the 2001 peruvian earthquake after bandpass filtering and
atmospheric pressure correction used in the study. The initial time corresponds to 08:00:00 UTC on June 24, and the
end time corresponds to 02:00:00 UTC on July 4. The length is 234 hours. Based on a visual inspection of the spectra
built using the data of various time spans, the noise level has the lowest noise level. The synthetic signals listed in
Table 2 have been added to the gravity time series.

We use0S0, 1S0 and0S2 to test the method. The modes0S0 and1S0 are the simplest because each of them has
only one singlet in the spectrum. The mode0S2 is split into five singlets0Sm

2 , m ∈ {−2,−1, 0, 1, 2}.
As proposed in the last section, the precision of estimates of periods will be inferred by comparing the exact and

estimated values of periods of similar synthetic signals added into the time series. The synthetic signal corresponding
to a real signal is chosen as similar as possible to the real signal in property, except a small difference in periods,
necessary for distinguishing them in the spectrum. For conformance with the damping nature of free oscillation, the
quality factorQ is also considered in each of these synthetic signals, though we don’t estimateQ using FAA. The
synthetic signals corresponding to0S0, 1S0 and0S2 are0W0, 1W0 and0W2, where0W2 is also split into five singlets
like 0S2, 0W

m
2 , m ∈ {−2,−1, 0, 1, 2}. We chose the periods and quality factors of0W0 and1W0 respectively to be

close to those of0S0 and1S0 given by Riedesel el al. (1980). The choice of0W
m
2 , m ∈ {−2,−1, 0, 1, 2} is more

sophisticated, as the property of splitting of0S2 should be retained. We chose their periods by shifting the frequencies
of 0S

m
2 , m ∈ {−2,−1, 0, 1, 2} given by Rosat et al. (2003a) by about the same amount, and their quality factors to

be close to that of0S2 given by Dziewonski and Anderson (1981). For all the synthetic signals, the initial amplitudes
are chosen to be close to those of the corresponding real signals determined by analyzing the time series without the
synthetic signals, and the phases, arbitrarily. The parameters chosen for the synthetic signals are listed in Table 2. The
graph of the time series with synthetic signals added is shown in Figure 1.

As mentioned in the last section, we search for periods in two steps. Firstly, we build an amplitude spectrum
between 0.2 and 2 mHz by settingn = 16. Secondly, we pick out the peaks from the spectrum and search more
accurately for the periods around these peaks by settingn = Tk/∆t, representing maximum possible resolution. Here
we add a third step: estimate the amplitudes and phases using least squares fits to the averaged short time series built
using the periods determined in the second step. The amplitude spectrum built at first step is shown in Figure 2. The
splitting of 0S2 and0W2 is shown in Figure 3, which is the amplification of a portion of Figure 2. As illustration, we
also present the graphs of the averaged short time series of0S0 and1S0 in Figure 4, which are indeed quite similar
to sinusoidal curves. The results from the second and third steps are listed in Table 3. As the quality factor is not
estimated in our approach, the amplitudes we obtain represent only the average, thus not comparable with the initial
values as given in Table 2. Nevertheless, we still listed them in the table. More digits are given for comparison between
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Figure 2: The amplitude spectrum of the gravity time series shown in Figure 1 built using the FAA. The peaks0S0,
1S0 and 0S2 are the free oscillation modes studied as examples in this work. The peaks0W0, 1W0 and 0W2 are
the corresponding synthetic signals added to the time series for assessing precision of the estimates of periods by
comparing the assigned and estimated values of them.
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Figure 3: The splitting of0S2 (left) and0W2 (right). This is a portion of the Figure 2 enlarged for showing the detail
in this band.

the estimates of the parameters and errors. The results in the table will be discussed in more detail in the following
two paragraphs.

First, we discuss the results for0S0 and1S0. Levels of error in the estimates of their periods are inferred from
comparing the assigned and estimated periods of the synthetic signals0W0 and1W0 listed in Tables 2 and 3, which are
lower than 50 ppm for both of them. As the maximum resolution of periods of the FAA as discussed in the last section
is far more accurate, this level of error is the result of the overall influence of all other signals and random errors in
the time series. For the Earth’s free oscillation, the estimates of the period of a mode obtained using different data
should be the same. Here we compare our results with those of Riedesel el al. (1980) who stacked 9 IDA records, and
estimated the period of0S0 to be1227.500 ± 0.005 (or±4 ppm) seconds using a time series of 2000 hours, and the
period of1S0 to be612.929 ± 0.018 (or±30 ppm) seconds using a time series of 300 hours. We see that our results
are in close agreement with those of Riedesel el al. (1980).

In this paragraph, we discuss the results of the 5 singlets of the mode0S2. For both0S2 and0W2, the singlets
corresponding to the values of the azimuthal order numberm = −2,−1, 0, 1, 2 are from left to right in Figure 2. We
see that them = 0 singlets of them cannot be clearly seen. Rosat et al. (2003a) gave in their Figure 5 the same graph
for 0S2 obtained using the data of the Strasbourg SG after the same Earthquake, where the singlet ofm = 0 can be
clearly seen. But when we compare the spectrums from the Sutherland and Strasbourg SG data in their Figure 4, we
see that the singlet ofm = 0 for the Sutherland instrument can neither be clearly seen. In fact, the amplitude of the
singlets of0S2 with azimuthal numberm = −2,−1, 0, 1, 2 depend on the amplitude ofPm

2 (cos θ) (θ is the colatitude)
that is respectively0.18, 0.23,−0.07,−1.36, 2.14 at Sutherland, and0.11,−0.25, 0.34, 1.49, 1.31 at Strasbourg. We
see that the magnitude ofP 0

2 (cos θ) at Sutherland is only one fifth of that at Strasbourg. So we attribute this low
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Figure 4: The averaged short time series of0S0 and1S0 corresponding to the maximum amplitude extremes. They
are used for estimating amplitudes and phases. As the modes studied decay, only their average amplitudes can be
estimated.

Table 3: Estimates of parameters of the synthetic and real signals. The differences between the amplitudes and phases
of the synthetic signals0W0, 1W0 and0W2 in this table and their corresponding exact values listed in Table 2 serve
as error estimates for the free oscillation modes0S0, 1S0 and0S2. The amplitudes are not comparable because those
listed in Table 2 are the initial values, and those in this table is the average ones. The singlets0W

0
2 and0S

0
2 are too

small in amplitudes, and are not estimated.
Mode Period Amplitude RMS error Phase RMS error

s nm s−2 nm s−2

0W0 1303.063 0.003996 0.000027 1.0788 0.0068
1W0 596.018 0.001144 0.000003 2.0012 0.0027
0S0 1227.509 0.004042 0.000025 2.0167 0.0063
1S0 613.010 0.001055 0.000003 -0.3793 0.0029

0W
−2
2 2941.289 0.000984 0.000042 1.9352 0.0429

0W
−1
2 2899.545 0.000632 0.000173 0.6680 0.2744

0W
0
2 - - - - -

0W
1
2 2826.855 0.001134 0.000099 -0.7947 0.0873

0W
2
2 2791.475 0.000904 0.000026 -2.1804 0.0285

0S
−2
2 3330.855 0.001020 0.000018 -1.7162 0.0181

0S
−1
2 3289.067 0.000638 0.000026 2.0646 0.0404

0S
0
2 - - - - -

0S
1
2 3184.754 0.001121 0.000056 0.4112 0.0499

0S
2
2 3140.636 0.000922 0.000025 -2.5517 0.0272

Table 4: Comparison between the estimates of the periods of the0S2 singlets of Rosat et al. (2003b) obtained by fitting
a resonance function to each Fourier spectral peak and those obtained using the FAA using the Strasbourg SG data
(Unit: second). The first and second lines are respectively the estimates and their errors of Rosat et al. (2003b). The
third line is our estimates. And the last line is the disagreement between the estimates of Rosat et al. (2003b) and the
ours.

0S
−2
2 0S

−1
2 0S

0
2 0S

1
2 0S

2
2

Rosat et al. 3334.91 3284.05 3235.72 3186.09 3143.57
±0.59 (177 ppm) ±0.73 (222 ppm) ±0.60 (188 ppm) ±0.52 (163 ppm) ±0.63 (200 ppm)

Our results 3336.61 3284.65 3235.19 3185.28 3144.70
Disagreement ±1.70(509ppm) ±0.60(182ppm) ±0.53(164ppm) ±0.81(254ppm) ±1.13(360ppm)
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amplitude of them = 0 singlet of0S2 to the data of the Sutherland instrument, and is not studied. As0W2 was made
as closer to0S2 as possible, it is natural that itsm = 0 singlet is neither clear in the spectrum. Level of errors in
the estimates of the periods of the0S2 singlets are estimated by comparing the assigned and estimated periods of the
0W2 singlets listed in Tables 2 and 3. We see that the result of0W

−1
2 has the largest error, which is 845 ppm. This

is conceivable as this singlet has the smallest amplitude. The error level of other singlets are below 300 ppm. For
comparison, we list in Table 4 the estimates of for the periods of the0S2 singlets obtained by Rosat et al. (2003b)
using the Strasbourg SG data. Their disagreement from our estimate using the Sutherland SG data listed in Table 3
are4.06 (1216ppm),5.02 (1525ppm),1.34 (419ppm),2.93 (934ppm) form = −2,−1, 1, 2 respectively. We see that
these differences are large that seems difficult to accept. If we compare the0S2 spectrum of the Strasbourg SG data
given in Figure 2 of Rosat et al. (2003b) with our Figure 2, we see that the Strasbourg spectrum is very clean, but the
Sutherland spectrum is polluted by some lower peaks which may be local background noises, or hums. Perhaps, the
periods of the Sutherland spectrum are biased by these hums with extremely close periods. For example, for the lowest
peak,0S

−1
2 , which may be more affected by the hums, our result agrees with that of Rosat et al. (2003a) at1525 ppm,

but for the highest peak,0S1
2 , which may be less affected by the hums, the agreement is as good as419 ppm, quite

close to our error estimate using synthetic signal.

As supplement of comparison, we have also applied in the same way the FAA to a 228 h-long record of the
Strasbourg SG (from 12 O’clock of Jun 25, 2001 to 0 O’clock of July 5, 2001, this time span is chosen such that the
noise is lowest in the0S2 band in the spectrum according to the visual examination). The results are also listed in
Table 4. The last row of the table is the disagreements between our results and those of Rosat et al. (2003b), which
should be acceptable as compared to the error estimates of Rosat et al. (2003b) since the data sets used are in fact not
exactly the same.

As demonstration of the use of taper, we have applied a Hanning window to the same data set used by Rosat et al.
(2003b) after least square band pass filtering to keep signals in the range 0.2-0.4 mHz (the band of the mode0S2), and
then determined the periods using the FAA. The periods for the 5 singlets of the mode0S2 for m = −2,−1, 0, 1, 2 are
respectively3334.99, 3283.17, 3235.65, 3186.03, 3142.86 seconds, which are in general closer to the results of Rosat
et al. (2003b) than those obtained in the last paragraph (listed in Table 1).

4 Concluding remarks

In this work, the FAA is applied to seek periodical signals in time series and to determine their periods accurately.
Various aspects of the FAA are discussed, including the signal-to-noise ratio improvement in the averaged short time
series, the highest possible accuracy of the estimates of the periods (for an ideal case), the signature of the real signal in
the short time series, the errors in the estimates of amplitudes and phases caused by errors in the estimates of periods.
The relations of the FAA with the DFT and the FFT with with zero padding are also investigated, showing that tapers
can be used for the FAA in the same way as for the DFT and FFT.

A weakness of the FAA is that it does not provide with estimates of errors for the estimates of periods. However, we
used an indirect method for assessing the errors of the periods which consists of adding into the time series synthetic
signals that are quite similar to the real signals found, and then using the differences between the exact and estimated
values of periods of these synthetic signals as a measure of errors for the estimates of periods for real signals.

To test the technique, we have applied it to numerous synthetic time series that consist of sinusoidal signals and
random noises of different level. The results demonstrate the feasibility of the method.

For geophysical application, we used it to determine the periods of the Earth’s free oscillations using a time series of
gravity observed by the GFZ SG installed in Sutherland, South Africa after the 2001 Peru Earthquake. Comparison of
our results with previous works are made using the modes0S0, 1S0 and0S2. For all the synthetic signals corresponding
the these modes added for accessing precision, our estimates of periods show very close agreements with the exact
values assigned. Our estimates of periods for0S0 and1S0 are also in very good agreements with the very elaborated
estimates of Riedesel el al. (1980). But for the mode0S2, the the agreement between our estimates of period and the
recent estimates of Rosat et al. (2003b) we have chosen for comparison is less good, which may be due to the high
noises very close to the frequency of0S2 in the Sutherland data. We have also applied the FAA to the Strasbourg SG
data that Rosat et al. (2003b) used, and the results show very good agreement.

Based on our experiments, we conclude that the FAA as a valuable method, among other methods being used, for
retrieving periodical signals from time series and determining their periods with high accuracy. It is expected to find
other applications in geophysics.
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