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Abstract

 
The new VAV tidal analysis program is designed to deal simultaneously with non-tidal as well as tidal signals. The
main goal of this paper is to study a well-known non-tidal signal: the air pressure influence, through the time variations
of its  admittance in some data sets  of superconducting gravimeters  from the Global Geodynamics Program (GGP).
Unhappily,  except  in Boulder,  where  seasonal  variations  of  the  air  pressure  influence  are  obvious,  the  detected
anomalies  are  due to gross  errors  in the  data  which are  reducing strongly the  signal to noise  ratio.  Thus  the  first
conclusion is a trivial one: it is impossible or too difficult to find useful non-tidal signals, when the data still contain
gross errors, i.e. non-useful non-tidal signals. Another conclusion of our investigation is that non-careful interpolations
can generate very bad, non-stationary noise in data series  of very good quality.  It is  thus important to reduce to a
minimum any “repair” of the data prior to the analysis.  The amount of “repair” depends strongly from the analysis
method. With its ability to analyze non-equidistant data with any sampling rate, VAV can simply suppress perturbed
data and ignore gaps.
 
1. Introduction

 
The Earth tide data processing has to deal with the general model:
 
Tidal data = Tidal signal + Non-tidal signals + noise
 
The tidal signal is the useful signal for the tidal domain, e.g. in connection with the Earth’s structure

and properties. Nevertheless, the model above clearly shows that the lack of attention paid to the non-tidal
signals may badly affect just the useful signal.
            For other domains, in particular the so-called “Earth deformations”, the non-tidal signals are useful
signals, e.g. for the search of earthquake and volcano precursors. In this case the tidal signal is only a noise.
However, just in the same way as above, a careless treatment of the tidal signal will spoil the detection of the
useful non-tidal signals.  Examples of  such inadequate  treatments are  the  eliminations of  the  tidal signal
through an elementary filtration.
            A conclusion  from these  simple  considerations is  that  the  tidal data  processing should  deal,  for
whatever purpose, most carefully with both tidal and non-tidal signals.
            A general problem of the model is how to distinguish between noise and non-tidal signals.
            All methods for Earth tide data analysis accept implicitly or explicitly that the noise of the data is a
random stationary phenomenon. Hence, all components of the data, which are not tidal waves and, in the
same time, which are non-stationary phenomena, should be considered as non-tidal signals. Typical examples
are instrumental drift, jumps, too big residuals, time variations of the tidal parameters, etc.
            A problem for the use of the non-tidal signals is that
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            The problem is to distinguish between these two phenomena. One thing is clear. If we are sure that the
anomalies are rare, it is easy to find the useful signals and, vice versa, if there are too many anomalies, it may
be too difficult or impossible to distinguish the useful signals. A bad news is that some of the anomalies may
be  generated by improper manipulation and processing of  the  data.  The  good news is that  we  have  the
possibility to avoid all improper manipulations and apply a correct data processing.
            This present paper is an attempt to study a well known non-tidal signal, the time variations of the
air-pressure admittance, i.e. the variations of the cross-regression coefficient, say b,  of the observed tidal
gravity with the air-pressure. We usually suppose that b is a constant. The deviations from this hypothesis
may indicate  that  either we need an improvement  of the  model of the admittance or we have a  kind of
anomalous signal.
            The results presented in this paper have been obtained through special options of the new computer
program VAV (Venedikov et al., 2001). In the next section 2 we shall describe the algorithm of the option.
            In  the  following sections we  shall give  some  examples of  application.  They have  been obtained
through  the  application  of  VAV on  3  series  of  superconducting gravity  data  (Table  1)  of  the  Global
Geodynamic Project (GGP) (Crossley, 2000), collected in the International Centre for Earth Tides (Ducarme
et al., 2000).
           

Table 1. List of series of superconducting gravitmeter data.
 

Station, Country Instrument
or sensor

Latitude,
Longitude

Time interval

Boulder, USA GWR CO24  40.13o, 254.77o 12.04.1995-01.08.1998
Cantley, Canada GWR T012  45.58o, 284.19o 07.11.1989-31.12.1998
Strasbourg, France GWR T005,

GWR C026  48.62o,   7.68o
11.07.1987-25.06.1996
01.03.1997-30.04.1998

 
            In the examples we have used, in parallel to the time variations of the b coefficients, residuals of the
filtered numbers (e.g. Figures 2 and 3 in section 3), provided by VAV. These residuals are a convenient tool to
find non-tidal signals because we get them at once for a whole time window, e.g. every 48 hours. The filtered
numbers, as well as the residuals are complex numbers, but we use only the real modulus. A threshold level
(the horizontal straight line in the graphics) is computed with very high confidential probability. In such a way
every value, which exceeds this level, can be considered as a non-tidal signal with a high confidence.
 
 
2. The main algorithm

 
The trivial way to study the time variations of some parameters is to partition the data into segments

and process the data, separately in every segment. Here we propose to apply a global analysis on the whole
series of the data, but to accept that in every segment we have a different or individual regression coefficient.
In such a way we get global estimates of the tidal parameters, by using a highest possible separation in tidal
groups, accompanied by a set of regression coefficients, related with every segment.

Generally, the multi channel analysis is based on model equations like
 
            ,                                                                                                        (1)
 
where U is a vector (column vector) of filtered tidal data, after the elimination of the drift,  is a vector of
the tidal unknowns  for a set of tidal groups, A is a known matrix, appropriately
created  by  using  the  theoretical  amplitudes  and  phases,  b  is  a  vector  of  unknown  cross-regression
coefficients, representing one or several admittance functions, V is a known matrix created by using, in one or
another way, the observed values of the 2nd, 3rd,… channels, e.g. air-pressure, temperature etc. and e is the
noise.
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            The estimation of the time variations of b is always related with a partition of the data into  time

segments:  related with the epochs , as shown in Figure 1
 
 

 
Figure 1. Partition of the data into segments.

           
            Corresponding to the partitioning we have
 

            , ,  and                                                       (2)
 

where   are  matrix  components  of   respectively,  related  with  the  segment

.
            One possibility to obtain the time variations is to apply the general equation (1) separately for every

, i.e. to deal with the equations
 

              separately for every                                     (3)
 
 
            From the separate solution of these N systems we shall get the estimates
 

                                                                                      (4)
 
i.e. the tidal unknowns and the regression coefficients as discrete functions of the time.

            A week point is that  so obtained are not estimates of the global tidal unknowns  in (1). E.g., for
data larger than 1 year, x in (1) may involve unknowns for each of the tidal groups: CHI1, PI1, P1, S1, K1,
PSI1, PHI1 and TET1, all of them having different amplitude factors. If the segments are as short as a few

months, all these groups should be included in one and the same group K1. Hence the elements of  are not
the same as those of x and they are estimated with a lower precision. Something more, the association of
groups  with  different  amplitude  factors  in  one  group  will  produce  time  variations  that  may  affect  the
estimated regression coefficients.
            In this relation VAV works with a single system of equations.
 

                                                                       (5)
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            Thus the terms U and A from (1) remain the same, but the matrix V and the vector b are considerably
transformed.
            From the solution of (5) by the method of the least squares we get global estimates  of the same

tidal unknowns  in (1) but a set of estimates  of the regression coefficients . Since

 is related with the epoch  we can consider  as a discrete function of the time that describes
the time variations of the regression coefficients.
            If the number N of the segments is high, the number of the unknowns may become too high which can
embarrass the computations. Due to this it is convenient to use the classical algorithm for the separation of the
unknowns. In our case it consists in the following way to obtain the estimates.

            We transform the matrices  into  through
 

             and create the matrix                                    (6)
 
 
            Then the estimates of the tidal unknowns are directly obtained through
 

                                                                                                                    (7)
 
where
 

                                                                         (8)
 

                                                                                    (9)
 

            Afterwards, we can compute the estimates  through
 

                                                                                               (10)
 
            The results in the following sections are obtained for a single auxiliary channel – the air-pressure - and

a single regression coefficient for every segment. In this case the vectors  become a scalar b, which is the
cross-regression coefficient and the expressions above are considerably simplified.
 
 
3. Station Cantley
 
            Figure 3, compared to Figure 2, shows the strong effect of the application of a usual multi-channel
analysis,  to  take  into  account  the  effect  of  the  air-pressure,  with  a  constant  in  time  cross-regression
coefficient b. In addition to the evident decrease of the level of the residuals, there is a huge decrease of the
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AIC value
 
 

 
Figure 2. Cantley, modulus of residuals in the D-frequency domain; the effect of the air-pressure is
ignored, i.e. no cross-regression. Akaike criterion for the analysis:
AIC = 88,495.

 
            A curious phenomenon is manifested at the place, indicated by a circle. In Figure 2 the residuals are
relatively low. Surprisingly, in Figure 3, at the same place, they become relatively high. It looks like a noise,
namely anomaly or non-tidal signal, generated by the reduction of the air-pressure effect.
 
 

 
Figure 3. Cantley, modulus of residuals in the D-frequency domain; the effect of the air-pressure is
taken into account, i.e. a cross-regression model is applied with a constant coefficient b; AIC= 60,201.

 
            Figure 4 shows an attempt to check eventual time variations of . There are 3 segments, defined by
two  large  gaps.  In  parallel  with  the  horizontal  lines,  giving the  value  of  b  in  every  segment,  the  95%
confidential intervals are given. These confidence intervals shows clearly that we have a significantly lower b
value in the first segment.

It should be noticed that the m.s.d. (mean square deviations) of b are usually determined, e.g. by the
ETERNA program (Wenzel,1996), on the basis of a white noise assumption. VAV computes the m.s.d. of b
on the assumption of a colored noise, i.e. we get frequency dependent m.s.d. In the case when a single b
coefficient is determined, the m.s.d. is determined by using the m.s.d. of the data at the lowest frequency, i.e.
the  highest  possible  m.s.d.  Due  to  this VAV provides higher  m.s.d.  of  b  than other  programs,  e.g.  than
ETERNA. This gives us more confidence when a significant difference is observed. The significance of the
time variation is also supported by a further decrease of AIC.
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Figure  4.  Cantley,  time  variations of  the  regression coefficient  b.  The  data  are  partitioned into  3
segments, defined by two important gaps; AIC = 60,020.

 
            The next Figure 5 shows a more detailed study of the time variations of b. There is an obviously
significant  decrease  of  b,  around t  =  548  days.  A further  decrease  of  AIC indicates the  reality  of  this
deviation.
 
 

 
Figure 5. Cantley - time variations of the coefficient b. The data are partitioned into 10 segments, each
segment including one and the same number of days; AIC = 59,151.

 
            After several experiments we succeeded to isolate  a  segment in the interval of t  (480, 540 days)
(Figure 6) for which we have an extremely low coefficient . For this case we have got AIC considerably
lower than in the other cases, which shows the reality of this strange value of b.
 
 

 
Figure 6. Cantley - time variations of the coefficient b; the segments are defined by two large gaps and
the interval of (480, 540 days) of length 60 days; the regression coefficient in the interval is ; AIC
= 56,881.

           
            As shown in Figure  7, when we accept  the  model of time variation of b  shown in Figure  6, the
anomalous residuals in Figure 3 have disappeared.
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Figure 7. The D-residuals corresponding to the time variations of the b – coefficient given in Figure 6.

 
            Unfortunately, this strange phenomenon cannot be any useful non-tidal signal. It  is an example of
what we have defined in section 1 as an anomaly and a serious one. Our supposition is that the data in the
controversial interval have been repaired in one or another way, most likely through interpolation, but without
restoring the atmospheric pressure effect. Thus, instead of finding an useful signal, we found an example
showing how a careless intervention in the data, may be an unnecessary interpolation, can generate noise.
 
Table 2. Results of the analysis of a series of data 01.07.1990–1.11.1991 in variants: whole series without any gap and
the series with a gap of 60 days, at the place of the controversial interval 02.03.1991 – 01.05.1991 (480-540 days).
 

Diurnal tides
Data used   d(Q1) m.s.d.   d(O1) m.s.d.   d(K1) m.s.d.

Whole series 1.16568 ±.00141 1.16648 ±.00028 1.14836 ±.00021
With gap 60 days 1.16474 ±.00085 1.16657 ±.00017 1.14823 ±.00013

Semidiurnal tides
Data used   d(N2) m.s.d.   d(M2) m.s.d.   d(S2) m.s.d.

Whole series 1.20961 ±.00064 1.20429 ±.00013 1.18396 ±.00027
With gap 60 days 1.20964 ±.00041 1.20429 ±.00008 1.18369 ±.00018

Cross-regression coefficient (admittance)
Data used b m.s.d.  

Whole series -2.8264 ±0.0568  
With gap 60 days -3.3201 ±0.0358  

           
The  results  in  Table  2  show that  when  such  data  are  introduced,  we  get  worse  results  instead  of  an
improvement or, which is the same, that the exclusion of such data actually improves the results.
 
 
4. Station Boulder
 
            Figures 8 and 9 are similar to Figures 2 and 3 in the previous section. They also demonstrate the strong
effect of the cross-regression, with an important reduction of the AIC value.
 

 
Figure 8. Boulder, residuals (modulus) in the D-frequency domain; the effect  of the air-pressure is
ignored, i.e. no cross-regression model; AIC = 46,504
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            Unlike the case  of Figure  3, in Figure  9 we see very few residuals over the  threshold level.  The
indicated case is interesting because it does not exist in Figure 8. It turned out, that this anomaly is due to
some interpolated air-pressure data. It is again an example of anomaly, generated by an unnecessary data
manipulation.
 
 

 
Figure 9. Boulder, residuals (modulus) in the D-frequency domain; the effect  of the air-pressure is
taken into account. A cross-regression model is applied with a constant coefficient b; AIC= 29,121.

 
            Otherwise, Figure 9 shows data with very good general behavior that are certainly interesting to study
for time variations of the air-pressure admittance.
 
 

 
Figure 10. Time variations of the b coefficients; the data are partitioned into 10 equal segments; AIC =
28,913.

 
 

 
Figure 11. Time variations of the b coefficients; the data are partitioned into 20 equal segments; AIC =
28,809.

 
            Figures 10 and 11 represent the time variations of the b coefficients, when the data are partitioned into
10 and 20 equal segments respectively. We have a reduction of the AIC value, compared to Figure 9. This
means that we have really some variations of b. The two peaks are significant deviations from the general
behavior of the observed curve. The distance between the peaks is close to one year. This is an indication
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about a possible yearly period, i.e. for some seasonal variations. We shall return to this point in section 6.
The attempts to find more  details in the  time variations of b  were  not  successful.  Moreover,  the

introduction of a time variable b has not seriously improved the analysis results.
 
 
5. Station Strasbourg
           
            In Strasbourg two instruments were successively installed: T005 from 1987 to 1996 and CT26 later on
(Table 1). Figures 12 and 13 are similar to the Figures 2 and 3 or Figures 8 and 9 in the previous sections 3
and 4. In figure 12 the noise level is very similar for both instruments and is mainly due to the atmospheric
pressure effects. In Figure 13 we have again a large reduction of the level of the residuals, especially for
CT26, and a corresponding considerable decrease of the AIC value. Nevertheless, in Figure 13 a considerable
number of values are exceeding the threshold level for T005. It is obvious that the records of the new CT
instrument are of much better quality.
 
 

 
Figure 12. Strasbourg, residuals (modulus) in the D-frequency domain; the effect of the air-pressure is
ignored, i.e. no cross-regression model; AIC = 145,247.

 
 

 
Figure 13. Strasbourg, residuals (modulus) in the D-frequency domain; the effect of the air-pressure is
taken into account; a cross-regression model is applied with a constant coefficient b; AIC= 124,076.

 
           
            The  first  attempt  to  study  the  time  variations of  b  is  shown in  Figure  14.  The  data  have  been
partitioned in two segments corresponding to the different instruments. The results are confirmed in Ducarme
& al., 2002 (Table 1), where the authors got using ETERNA software (Wenzel, 1996):
For T005 ( 3,272days ) b = -3.128 ± 0.010 nm.s-2/hPa
For CT26 (   817days ) b = -3.394 ± 0.007 nm.s-2/hPa
 

A premature  conclusion  is  that  we  have  different  admittances  for  the  two  instruments.  Such  a
conclusion could lead us to state that an important part of the air-pressure effect is instrumental.
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Figure 14. Strasbourg, time variations of b through partition of the data in two segments defined by a
gap coinciding with the replacement of the gravimeters; AIC = 124 065.

 
            Figure 15 shows an attempt to study in more details the time variations of b. According to the AIC
value this case is more reliable and the premature conclusion made above is no more so convincing. Now we
can see several relatively low values, in particular at  the  very beginning, as well as at  two points in the
interval (1950, 2250 days).
 
 

 
Figure 15. Strasbourg, time variations of b through partition of the data in 30 equal segments; AIC =
123,872.

           
            The next Figures 16 and 17 are samples showing more details in these areas. We have namely four
segments of length between 10 and 24 days in which we have practically . The confidential intervals of
b are not shown, but actually in all these cases of low b they cover the zero. The further decrease of AIC is in
support of this result. In both Figures the AIC has one and the same value because the graphics are obtained
through one and the same analysis.
 
 

 
Figure 16. Strasbourg, location of two segments, (44, 68 days) and (102, 112 days), with values of b,
which do not differ significantly from the zero; AIC = 123,345.
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Figure 17. Strasbourg, location of two segments, (1970, 1982 days) and (2222, 2238 days), with values
of b which do not differ significantly from the zero; AIC = 123,345.

 
            In (Hinderer et  al.,  2002) the  authors are  in favor of  the  use  of interpolated data,  as well as of
“repaired data”. Due to this we can suppose that the segments with zero admittance are actually interpolated
data. Normally the air pressure effect should be artificially introduced in the interpolated sections, using its
nominal admittance. Perhaps it was not done properly. We can thus suppose that there are other parts in this
series with interpolated data without introduction of the air pressure correction. The result is the introduction
of additional noise in the residues of Figure 13, which exceed the threshold level.
            It is too difficult to find all places with interpolations and repairs. We have thus simply applied the
option of VAV for automatic elimination of the doubtful data, which are of course not only interpolated data.
Table 3 shows the results of this procedure, applied in 4 iterations. Although this option resulted in a massive
elimination of data, till 23.6% of all data as well as it introduced a huge number of gaps, we have got a fair
diminution of the associated RMS errors.
            The  cases of  ETERNA and VAV without  any  elimination,  i.e.  in  the  0-iteration,  are  practically
identical. However, when we apply VAV possibility to check and eliminate the doubtful data, which is also
based  on  the  VAV capacity  to  deal with  a  great  number  of  gaps,  we  get  considerable  deviations from
ETERNA. The precision for the D tides is raised more than twice and, for the SD tides, nearly twice.
 
Table 3. Station Strasbourg (T005 and CT26): analysis by ETERNA on the whole series and by the VAV program in
an iteration procedure, eliminating data with too big residuals.
 

Software
Nr of
itera
tion

Elim.
Data

Amplitude d factor(diurnal tides)
Q1

m.s.d.
O1

m.s.d.
K1

m.s.d.

ETERNA     0%
1.14598
±.00073

1.14733
±.00014

1.13540
±.00010

VAV 0    0%
1.14571
±.00069

1.14726
±.00013

1.13541
±.00009

VAV 1  7.8%
1.14577
±.00041

1.14748
±.00008

1.13554
±.00005

VAV 2 15.0%
1.14572
±.00032

1.14757
±.00006

1.13569
±.00004

VAV 3 20.3%
1.14578
±.00030

1.14756
±.00006

1.13569
±.00004

VAV 4 23.6%
1.14586
±.00029

1.14756
±.00005

1.13573
±.00004

 

Software
Nr of
itera
tion

Elim.
Data

Amplitude d factor(semidiurnal tides)
N2

m.s.d.
M2

m.s.d.
S2

m.s.d.

ETERNA
 

   0%
1.17173
±.00040

1.18520
±.00008

1.18784
±.00017

VAV 0    0%
1.17173
±.00039

1.18518
±.00007

1.18784
±.00015
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VAV 1  7.8%
1.17231
±.00026

1.18537
±.00005

1.18795
±.00010

VAV 2 15.0%
1.17211
±.00023

1.18547
±.00004

1.18787
±.00009

VAV 3 20.3%
1.17214
±.00022

1.18547
±.00004

1.18782
±.00009

VAV 4 23.6%
1.17220
±.00021

1.18548
±.00004

1.18786
±.00009

 
            It is interesting to see how the iterations affect the picture on Figure 14 and the possible conclusion
that the air-pressure admittance is significantly different for the different instrument.
            In Figure 18 the iteration 0 is a reproduction of Figure 14. After iteration 1, with a moderate quantity
of  eliminated  data,  we  have  still  a  difference  between  the  two  segments,  i.e.  the  two  gravimeters.
Nevertheless,  the  difference  is  smaller  and  the  confidence  intervals  are  overlapping,  although  they  are
narrower than in Figure 14. Hence the difference becomes statistically not significant. We can give a sigh of
relief, because the instruments are not responsible for the difference and they cannot be accused to have a
different admittance. The other iterations in Figure 18 follow the tendency to decrease the difference, so that
after iteration 4 we get practically identical admittance for the two segments.
 
 

 
Figure  18.  Strasbourg,  time  variations  of  b  through  partition  of  the  data  in  two  segments  with
elimination of data in an iteration procedure.

 
 
6. Seasonal variations of the air-pressure admittance
 
            As said in section 4, in the series of Boulder, there are some indications of a seasonal variation of the
air pressure admittance b with a yearly period. As far as such a supposition is correct, the time variations we
can see in Figures 10 and 11 may be considered as a useful non-tidal signal. To check this hypothesis        we
have used a specific way. The data have been split into segments, which are defined as sets of data, instead of
segments, which are data intervals. More concretely, in Figure 19, segment 1 includes all data in all years
during the month of January,  segment  2 – all data  during February,  and so on. Then the global analysis
provides us the b coefficients for every segment. It is possible to say that we partition the data into seasons
and get b estimated for every season – in Figure 19 for every month.
            The  curves in Figure  19,  in particular  the  confidence  intervals,  indicate  the  reality of a  seasonal
dependence, characterized by an increase of the b values during the warmer seasons.
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Figure 19. Seasonal variations of the cross-regression coefficient b with confidential interval, a season
being chosen as a month.

 
            Other variants of choosing the seasons are shown in Figure 20. Both cases A and B of this Figure
confirm the inference for higher b during the warmer seasons.
 
 

 
Figure 20. Seasonal variations of the cross-regression coefficient b; in case A we have 4 seasons, every
season involving 3 months and in case B we have only two seasons, every one of them involving 6
months.

 
            We confirm here the results obtained by T.van Dam & O.Francis (1998) who gave a meteorological
explanation of this phenomenon.

In  other  series of  data  we  have  observed  only  very  slight  similarity  to  the  picture  in  Figure  19.
Obviously,  the  problem  is  very  sophisticated  as  it  depends  essentially  of  the  regional  meteorological
conditions. It should be investigated in more details. One of the necessary conditions for such investigation, is
a careful check of the data and the elimination of all artificially introduced anomalies.
 
 
7. Conclusions
 

The  initial  purpose  of  this  paper  was  to  check  the  existing conception  about  the  air  pressure
admittance and, eventually, to encourage the research of more sophisticated models. In this sense, the only
result, which may be considered as moderately successful, is the observation of time variations in Boulder.

In the other examples, considered here, our computing technique turned out to be helpful only for
finding some anomalies in the data. Thus the first conclusion is a trivial one: it is impossible or too difficult to
find useful non-tidal signals, when the data still contain gross errors, i.e. non-useful non-tidal signals. It is
traditionally the goal of the preprocessing of the tidal data to "repair" the data by eliminating the spikes and
jumps and to fill small gaps in the series. Ideally abnormal data should always be eliminated, but the different
tidal analysis methods had and still have different requirements on the preprocessed data, even if the term of
"repaired data" may sound to a specialist on data processing no better than "false money" to a cashier. In any
case  another  conclusion  of  our  investigation  is  that  non-careful  interpolations  can  generate  very  bad,
non-stationary noise in data series of very good quality.
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            The fear of gaps is linked to the classical Fourier methods as they have been applied in the early times,
the epoch without computers or with very slow computers. When such methods are applied on evenly data
without  gaps  we  get  fine  results  and  the  computational  work  is  very  simple.  If  there  are  gaps,  the
computations become considerably more complicated. If the gaps are simply ignored and replaced by zeros,
we get spikes and all possible deformations of the results.
            The situation is completely different when the method of the least squares (MLSQ) is used. MLSQ is a
more general method than the Fourier methods. There is not any condition of evenly spaced data. We have
only to correctly create the observation equations about the data at the time moments at which they exist. The
equations  take  into  account  all  interrelations  or  interactions  between  the  unknown  parameters  and  the
functions in which the parameters take part. Then the solution of the equations provides the estimates of the
parameters without any spikes.
            Of course, it is better when the data are without gaps, by the simple reason that higher quantity of data
provides a higher precision. Nevertheless, it is a bad illusion to believe that, if a gap is fulfilled by artificially
created data, this operation will improve the accuracy. In the best  case, it  is possible to get  an apparent
reduction of the m.s.d. Moreover, if the model used for interpolation is different from the real tidal factors of
the series, interpolation will bias the results. Actually, the interpolated and repaired data are often source of
additional noise. It is much more useful to work with longer series including gaps, to improve the resolution,
than with shorter series without gaps. It is better to use a series of 12 month with a two months gap inside,
than a series of 10 months without gaps.
            Actually,  we  think that  the  interpolation is imposed by purely practical reasons.  The methods of
analysis like ETERNA (Wenzel, 1996), based on the general scheme of Chojnicki (1972), use high-pass filters
like the filter of Pertsev. Such filters have a low signal-to-noise ratio, of the order of 1. Due to this they need a
moving filtration, which replaces one original data by one filtered data (nearly). In the same time the moving
filtration cannot support a great number of gaps, because they may produce losses of a great number of data.
To obtain filters with better signal to noise and cut-off characteristics it is necessary to increase the length of
application and thus to increase the loss of data  at  each gap. One cannot  avoid these sharp filters when
decimating the data from the original sampling rate to minutes or hourly data. Moreover the direct analysis
without filtering, which is used for the determination of the long period tides including the so called "pole"
tides, requires to model the drift in each data section. A large number of gaps or jumps will ends up with an
unrealistic number of unknowns.
            The methods like VAV use narrow band-pass filters, which have considerably higher signal-to-noise
ratio. For example, if the time window is 48 hours, these filters provide, for each tidal family, a pair of filtered
numbers, everyone with a signal-to-noise ratio very close to 48/2=24. Due to this we can apply the filters
without overlapping, with all gaps remaining between the filtered intervals, with a very small quantity of lost
data. Some people consider such a filtration as a decimation of the data with a step equal to the time window.
Actually, this operation is a transformation of the data from the time domain in a time/frequency domain,
which keeps the whole useful information.

The problem of spikes and tares is more delicate. If non-harmonic perturbations are left in the original
sampling of the data, they will produce biased data after decimation to lower sampling rates, minutes or hours.
In tidal analysis methods such as ETERNA, which can be applied to any sampling rate without decimation,
spikes and tares have nevertheless to be "repaired" as their simple elimination will create a large numbers of
small gaps. Other classical analysis methods such as VEN66 (Venedikov, 1966) or NSV98 (Venedikov & al.,
1997) still require uninterrupted data sets of let's say 48h and it was the usual practice to interpolate missing
data up to a few hours to complete blocks and to smooth out small perturbations. Only VAV accepts unevenly
spaced data  and will no more require  interpolations or data  smoothing, as abnormal data can be directly
eliminated in the original sampling.
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