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Abstract: Data collected from a superconducting gravimeter contain spikes, gaps, datum shifts (offsets) and
other disturbances. Data sampling rates are usually higher than required and filtering is the usual procedure
that is followed for their decimation. Spikes, gaps and datum shifts are not desirable in the data and often are
removed following techniques that are not rigorous and based on intuition. More importantly, the acquired
data series are non-stationary by virtue of having variable noise levels; yet, they are assumed stationary when
they are cast in a spectral analysis scheme. In this paper a rigorous method is presented for the analysis of the
superconducting gravimeter data,  based on the  parameterisation of unknown quantities in a  least-squares
scheme, followed by statistical testing and evaluation of the solution. It  is shown that there is no need to
de-gap and de-spike the data, or pre-process noisy segments due an earthquake. An example is given by
analysing a  five-day-long series  from the  Canadian  Superconducting Gravimeter  Installation  (CSGI),  in
Cantley, underlining the advantages of the approach.

 

1. Introduction
  The Global Geodynamics Project (GGP), an international program of observations of temporal variations of
the gravity field of the Earth, is co-ordinating the operation of a network of 16 superconducting gravimeters
(SG) around the globe, for the purpose of studying a range of important phenomena, such as Earth tides,
ocean tide loading, core nutations and core modes. The SGs sample the gravity field every 1-10 s with a
precision of  one  nGal and they are  frequently  calibrated with  absolute  gravimeters.  The  GGP  has been
scheduled for six years (1997-2003) and data from all stations are being sent to the International Centre of
Earth Tides (ICET) in Brussels for further distribution to the scientific community. More details on the GGP
can be found in Crossley et al., (1999). 

  Similar to any other experimental series, the SG data are not continuous due to instrumental failures. Power
failures usually introduce short gaps, while the presence of spikes is not unusual. Furthermore, advances in
instrument  development  and  our  better  understanding  of  the  operation  of  the  SG  have  resulted  in
improvements in the  accuracy of  the  data  and will continue  to improve  over  the  life  span of  the  GGP.
Precipitation, hydro-geological processes, earthquakes and other disturbances (helium refills, maintenance,
calibration, system upgrades) alter significantly the quality and the characteristics of the series, introducing
variable  noise  levels and datum shifts (offsets).  Thus,  SG time series collected over long periods will be
non-stationary by virtue of being unequally weighted.

  The majority of the researchers are using almost exclusively fast Fourier transform  (FFT) algorithms for the
determination of the power spectrum of the SG series. The FFT approach is computationally efficient and
produces,  in  general,  reasonable  results  for  a  large  class  of  signal  processes  (Kay  and  Marple,  1981).
However,  there  are  many  inherent  limitations  in  the  FFT  techniques,  the  most  prominent  being  the
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requirement that the data be equally spaced and equally weighted (e.g. Press et al., 1992). Pre-processing of
the data is inevitable in these cases. De-gapping, de-spiking, de-trending and smoothing noisy segments of the
data (earthquakes) are part of the routine before an analysis is initiated. Any “data massaging” is subjective,
non-rigorous, non-unique and, in general, unsatisfactory.      

  In order to avoid unnecessary data pre-processing that  may corrupt  or obliterate the useful information
hidden in the series (signal), the Least Squares Spectral Analysis (LSSA) is used in this study as an alternative
to the classical Fourier methods. LSSA was first developed by Vanícek (1969; 1971) to bypass all inherent
limitations of Fourier techniques, providing the following advantages: (a) systematic noise (coloured or other)
can be rigorously suppressed without producing any shift of the existing spectral peaks (Taylor and Hamilton,
1972),  (b)  time  series  with  unequally  spaced  values  can  be  analysed  without  pre-processing (Maul and
Yanaway, 1978; Press et al., 1992), (c) time series with an associated covariance matrix can be analysed
(Steeves, 1981, Pagiatakis 1999) and (d) rigorous statistical testing on the significance of spectral peaks can
be performed (Pagiatakis, 1999).

  In this paper, a brief overview of the LSSA is presented and applied on a segment of the SG series obtained
from the Canadian Superconducting Gravimeter Installation (CSGI). The interested reader can find additional
details on the LSSA in Pagiatakis (1999).

 
2. Overview of the Least-squares Spectral Analysis
  An observed time series can be considered to be composed of signal, a quantity of interest, and noise, and
an unwanted quantity that distorts the signal. The noise can be random or systematic. An idealised concept of
random noise is the white noise, which is completely uncorrelated possessing constant spectral density and it
may or may not follow the Gaussian distribution. In practice, we usually deal with non-white random noise, a
band-limited random function of time. Systematic noise, is noise whose form may be describable by a certain
functional form; it can be periodic (coloured), or non-periodic. Non-periodic noise may include datum shifts
(offsets)  and trends (linear,  quadratic,  exponential,  etc.)  and renders the  series  non-stationary,  that  is,  it
causes the statistical properties of the series to be a function of time.

  An observed time series is considered to be represented by f(t)0,, where , is a Hilbert space. The values of
the series have been observed at times ti, i=1,2 ...m; here, we do not assume that ti are equally spaced. We
assume, however,  that  the  values of the  time series possess a  fully populated covariance matrix Cf,  that
metricises ,.

  One of the main objectives of LSSA is to detect  periodic signals in f,  especially when f  contains both,
random and systematic noise. Thus, time series f can be modelled by g as follows:

                                    g = Mx                                                                                                            (1)

where  M=[Ms|Mn]  is  the  Vandermonde  matrix  and  xT=[xs|xn]T  is  the  vector  of  unknown  parameters.
Subscripts [s] and [n] refer to the signal and noise, respectively. Matrix M specifies the functional form of
both signal and (systematic) noise. We must emphasise here that the distinction between signal and noise is
subjective, therefore, the partitioning of M and x is arbitrary. We wish to determine the model parameters,
such that the difference between g and f (residuals) is minimum in the least-squares sense. Using the standard
least-squares notation (e.g. Vanícek and Krakiwsky, 1986) we can write:

In the above equation,  is the orthogonal projection of  onto the subspace Sd,, generated by the column
vectors of M. It follows from the projection theorem (Oden, 1979) that . This means that f has been
decomposed into a signal and noise  (residual series).
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  In order to find something similar to spectral value, we have to compare  to the original series. This can be
achieved by projecting orthogonally back onto ,, and comparing the norm of this projection to the norm
of  f. Hence, we can obtain a measure (in terms of percent) of how much of is contained in f. This ratio is
smaller than unity and can be expressed as follows:

  So far, we have not specified the form of the signal through base vectors that form M. In spectral analysis, it
is customary to search, among others, for periodic signals that are expressible in terms of sine and cosine base
functions. Thus, we can assume a set of spectral frequencies W={Ti; i=1,2,... k}, each defining a different
subspace S spanned by M (Wells et al., 1985)

                                                                             (4)

and the orthogonal projection of  f onto S will be different for each TiÎW . We must emphasise here that each
frequency  TiÎW,  is  tried  independently  from the  rest.  Then  the  least-squares  spectrum  is  defined  by
[Pagiatakis, 1999; Eqs. (5) and (10)]

where Qn and Qs are the quadratic forms of the noise and signal respectively.

  At this point, it is expedient to re-examine equation (1) and the partitioning of matrix M. Ms may include
trigonometric base functions (Eq. (4)) to describe the periodic components of the series, or other, such as
random walk, autoregressive  (AR), moving average  (MA), and autoregressive moving average  (ARMA)
(Jenkins and Watts, 1968; Gelb, 1974). When the calculation of the least-squares spectrum is carried out,
there  will be  a  simultaneous least-squares solution for  the  parameters of  the  process.  This,  indeed,  is  a
rigorous approach to the problem of hidden periodicities: the parameters of the assumed linear system driven
by noise are determined simultaneously with the amplitudes and phases of the periodic components and with
other parameters, that describe systematic noise.

  Equation (5) gives the least-squares spectrum in percentage variance and it is equivalent to a periodogram,
or amplitude spectrum. However, Eq. (5) can be further developed into other forms to provide the researcher
with more  familiar  spectral representations,  such as power spectral density (PSD) in decibels (dB) or  in
units2/frequency, where “units” signifies the units

of the time series values. Following Pagiatakis [1999], the least-squares power spectral density in decibels is
given by [ibid., Eq. (11)]

Solving Equation (5) with respect to Qs and dividing by the frequency f, the classical least-squares spectrum
can be transformed into a least-squares PSD in units2/frequency

The least-squares PSD given by (6) and (7) is equivalent to the one determined from the FFT method, when
the series is equally spaced and equally weighted. Evidently, (6) and (7) can be used to calculate power
spectra of any series, without resorting to FFT and its stringent requirements.
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  What follows is a thorough and rigorous analysis of the SG series from the CSGI, using software LSSA v5.0.
This software  is based on LSSA v1.0 (Wells and Vaní…ek, 1978) and LSSA v2.0 (Wells et.  al.,  1985).
Statistical evaluation of the results of this analysis are based on Theorem 3 and Theorem 4 as developed by
Pagiatakis (1999) and on other classical statistical tests found in geodetic methodology (e.g. Mikhail, 1976;
Vaní…ek and Krakiwsky, 1986). 

 

3. CSGI Data Analysis
  As it is mentioned in the introduction, similar to any other experimental series, the SG data from the CSGI
possess short gaps, spikes, datum shifts (offsets), earthquake disturbances, and atmospheric and hydrological
effects. The latter effects introduce increased noise in short time scales, which occasionally can reach many
tens  of  mGal.  Figure  1  shows  a  sample  of  typical  daily  records  from the  Canadian  Superconducting
Gravimeter Installation (CSGI). On a “quiet” day, the noise level is usually low, reaching an RMS scatter of a
few tenths of mGal (Fig. 1a). Atmospheric disturbances, such as heavy precipitation or abrupt change of the
atmospheric pressure, increase the noise to several mGal (Fig. 1b), or even to several tens of mGal (Fig. 1c).
Human disturbances are also possible, despite the extreme care taken by the personnel when, for instance,
transferring liquid  helium (Fig.  1d),  or  repairing certain  components  of  the  installation  (e.g.  cold  head
replacement). Very often, the record is severely saturated with non-gravity signals, such as those originating
from an earthquake (Fig. 1e). Power fluctuations or short interruptions, or sometimes other unknown causes
may force the data acquisition system (DAS) to a re-boot. Re-booting of the DAS takes usually a few minutes
and this is the cause of short data gaps.

  It is our tenet that when such time series are used to detect minute changes of the Earth’s gravity field and in
particular those originating from deep interior processes (e.g. core motions), the series have to be treated with
great respect! Any pre-processing, such as
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editing,
de-gaping,
de-spiking,
and
de-trending,
or  ignoring
the  variable
noise levels,
may
obscure  or
suppress
nanogal
level
signals,  yet
very
important
for  the
studies  of
the  Earth’s
deep
interior.
Hence,  the
series  must
be  analysed
as  recorded
with  no

pre-processing. Traditional FFT methods are not offered for such an analysis for the reasons outlined in the
introduction.
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  In order to demonstrate our rigorous approach, we select a five-day record from the CSGI, shown in Fig. 2.
This record possesses almost all the characteristics usually found in a SG time series. The presence of a nearly
two-minute gap renders this segment essentially unequally spaced. Variable noise levels throughout the series
require variable weights; simply it is not suitable to assign the same weight to all the series values when their
noise level varies significantly (cf. Fig. 1). In addition, the presence of an earthquake (day 339) and other
smaller disturbances may have introduced an offset that cannot be detected by a simple visual inspection of
the record. Furthermore, we introduce an artificial offset of +1 mGal after t=8169h (arrow #4) and anticipate
that it will be recovered in the analysis. The positions of the other arrows signify the times of possible offsets
to be investigated in this analysis.

  The original 1s data are filtered in the time domain, using a Parzen window (Jenkins and Watts, 1968) with
lag=29s (total width of 1 minute). This window is used as a weighting function throughout the whole segment,
centred at random times with no overlap between successive windows to avoid correlation. Each series value
that is included in the window is assumed to have a variance equal to that of the segment been filtered. This
variance is propagated through the filtering algorithm to the filtered value. In Fig. 2, the blue panels show
details of the series under investigation. Note the variable error bars and the unequal sampling, which in this
particular case varies at  random between 1-6 minutes. The choice of the Parzen window with lag=29s is
somewhat arbitrary and it is selected here for illustration purposes only. The researcher may experiment with
different weighting functions, such as boxcar, triangular, Gaussian, Tukey (e.g. Jenkins and Watts, 1968), or
none at all, and with lags other than the one used above. The variable-sampling rate introduced in this analysis
eliminates any aliasing arising from the filtering procedure. This is highly desirable in any time series analysis,
and  the LSSA is the only method that can handle unequally spaced series.
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  To illustrate the importance of the proper weighting of the time series values, we produce two spectra for the
series. The first spectrum is calculated by choosing equal weights for the series values and it is shown in Fig.
3a, with its respective least-squares PSD (mGal2/cpd) in Fig. 3b (cf. Eq. 7). Consequently, assigning variable
weights to the series values (inverse of their variance) produces the second spectrum, which is shown in
Figures 3c and 3d. It is obvious that the semidiurnal/diurnal peak ratios are different. However, the unequally
weighted spectrum reproduces more accurately the theoretical ratios for this location. The interested reader
can also refer to Pagiatakis (1999) for a similar example from VLBI series analyses.
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  The next step concerns the analysis of the five-day segment shown in Fig. 2. In this analysis, we are not
interested in the tidal constituents; we suppress the tidal waves that are separable within the 5-day span, using
their theoretical, well-defined frequencies. We cast  the series in a least  squares spectral analysis scheme,
focusing our attention to the detection and suppression of other significant spectral peaks, as well as to the
determination of the five datum shifts indicated by the arrows in Fig. 2. Significant peaks are identified by
using Theorem 3 and Theorem 4 from Pagiatakis (1999), assuming a 99% confidence level. Following a
meticulous identification of spectral peaks, all tidal and non-tidal constituents (15 in total) along with the five
offsets  are  suppressed  simultaneously  to  produce  a  residual  series  shown  in  Fig.  4.  The  residual  series
possesses  a  weighted  RMS scatter  of  0.18  mGal and  the  error  bars  signify  1-s  formal errors.  Note  the
increased error bars during the earthquake. 

  Following the completion of the analysis and evaluation of all the parameters describing the significant
constituents of the series, we step back to rerun the analysis without suppressing the five datum shifts. The
residual series is shown in Fig. 5 (upper panel). The five arrows indicate, again, the points where offsets may
be present. Other than the artificial offset at t=8169h, it is nearly impossible to conclude whether the other
offsets exist, or even more importantly, whether they are significant or not, just by visually inspecting the
series. We will revisit this “identification” issue after we discuss the evaluation of the determined parameters
as obtained from the least squares analysis.

  In the geodetic methodology of parameter determination using least squares procedures, it is important to
evaluate statistically the various steps of the analysis. The application of rigorous, well-established statistical
tests can be found in many classical geodetic textbooks (e.g. Mikhail, 1976; Vaní…ek and Krakiwsky, 1986).
LSSA software v5.0 is equipped with numerous statistical tests, such as the goodness-of-fit test of the residual
series,  the  chi-square  test  of the  variance  factor,  the  statistical tests on the  significance  of peaks in the
spectrum (F, or hypergeometric distribution) and the statistical tests on the significance of the determined
parameters (F, or chi-square distribution). We wish to focus here on the statistical evaluation of the vector of
determined parameters, including the offsets. It is well known that the vector of determined parameters can
be checked for statistical significance with respect to a set of expected or assumed values. These tests are
very well documented and applied on a routine basis in
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geodetic problems (e.g. Vanícek and Krakiwsky, 1986, p.239). Often, however, we wish to test the statistical
significance of a sub-vector of parameters, or even a single element of it. This is a slightly more involved but
well established procedure (e.g. Vaní…ek and Krakiwsky, 1986; p. 241).

  In the case of the present SG data analysis, we test whether the determined offsets are significantly different
from zero. This is achieved by comparing the absolute value of each offset separately to its standard error,
multiplied by an expansion factor Ca (see Vaní…ek and Krakiwsky, 1986; p.241). If the absolute value of the
offset  is  less  than  the  product  Cas,  then  the  offset  will  be  declared  insignificant.  The  results  from the
evaluation of all five offsets are summarised in Table 1. In Table 1, column 1 gives the times of the offsets
(hours), column 2 is the least-squares estimate of the offsets, whereas their standard error given in column 3.
Columns 4 and 5 provide the product of the standard error with the expansion factor C0.05=2.89, when the
a-priori  variance  factor  is  known,  or  with  C0.05=3.04  when  the  a-priori  variance  factor  is  unknown,
respectively.  Note  that  the  offset  at  t=8149hr,  is  marginally  significant.  When  using a  more  stringent
significance level, i.e., a=0.01, then this offset becomes insignificant.  In Fig. 5, the green arrows show the
times where the offsets are significant, while the red arrows indicate insignificant offsets.

 

Time (hours) Offset (mGal) s (mGal) 2.89s  (mGal) 3.04s  (mGal)

8124 +0.41 ±0.22 +0.64 Insignificant +0.67 Insignificant

8132 +1.61 ±0.21 +0.61 Significant +0.64 Significant

8149 +0.73 ±0.23 +0.66 Significant +0.70 Significant

8169 +1.66 ±0.19 +0.55 Significant +0.58 Significant

8178 -0.23 ±0.21 +0.61 Insignificant +0.64 Insignificant
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Table 1. Least-squares estimates of the offsets and their standard error (columns 2 and 3). Columns 4 and 5 show the upper limits of
the offsets above which they are statistically significant at a=0.05 for known, or unknown a-priori variance factor, respectively. 

 

5. Discussion and Conclusions
  SG time series, like any other experimental series, possess trends, spikes, gaps, atmospheric and earthquake
disturbances, as well as variable noise levels. Most importantly, SG series comprise very useful information
on various physical processes, such as atmospheric and hydrological phenomena, sea level variations, tides,
ocean loading, free oscillations and core motions. Many of these processes are at the nanogal or microgal
level (at the most) and they can be easily obscured by the presence of noise in the series. Series editing is
dictated by the FFT techniques because all the unwanted disturbances mentioned above simply cannot be
handled by this method. Editing may produce artistic and well-composed series but it may, at the same time,
obliterate useful information (signal), or even introduce new artificial signals. More importantly, editing is
often performed at different non-rigorous pre-analysis stages and the determination of the parameters (e.g.
offsets) is merely achieved in a non-simultaneous fashion, that is, the offsets are treated separately from each
other and separately from the other parameters.

  LSSA can be applied directly to the experimental series without the need of editing or filtering. All unknown
parameters are determined simultaneously, whilst rigorous statistical testing is applied to evaluate the residual
series and the significance of the determined parameters, either as a vector, or as individual elements. The
statistical significance of the peaks is evaluated rigorously (Pagiatakis,  1999) leaving very little  room for
wrong decisions to be made by the researcher.

  The identification and evaluation of offsets in a series is very important. LSSA can evaluate the offsets
alongside  other parameters.  This is achieved by identifying the  times at  which offsets are  suspected and
letting the least squares procedure evaluate them. It is imperative to mention here that those offsets, which
seem to recover slowly after a few or several hours need not be treated separately from the others. Simply the
LSSA solution will show no offset at all, as the best fit of the sinusoid and the other base functions (trends,
offsets, etc.) will result in larger residuals in the segment of the offset recovery. In fact, the offset recovery
will show perfectly in the residuals.
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