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ABSTRACT 
The longest series of superconducting gravimeters participating to the Global Geodynamics 
Project (GGP, Crossley et al., 1999) are now ranging between 10 and 18 years. It was possible 
to extract successfully the nodal waves for 12 series longer than 3,500 days using the VAV04 
tidal analysis program (Venedikov and Vieira, 2004). In most of the cases the tidal parameters 
of the nodal waves agree with those of the main tidal constituent.  The K1 triplet is especially 
interesting, being submitted to the resonance of the liquid core of the Earth. The amplitude 
factors of the three constituents should differ by 0.1% according to different Earth models. 
This effect is clearly seen in our results.  We introduce a parameter ρ± = 1- δK1±/δK1), free 
from calibration errors and ocean tides loading influence, to express the relative difference 
between K1 and its nodal companions K1- or K1+. The K1- nodal wave has a too small 
amplitude to provide reliable results but the mean relative difference ρ+ between K1 and K1+ 
(0.113%±0.022%) is very close to the values 0.124% and 0.116% predicted respectively by 
the DDW99NH (Dehant et al., 1999) and the MAT01NH  (Mathews, 2001) non hydrostatic 
models. 
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Foreword 
The lunar nodal waves associated with the main tidal components have been fairly well 
separated from a 14 year long record of the superconducting gravimeter T003 (SG, Hinderer 
et al., 2007) of Brussels by Ducarme and Melchior (1998). The most interesting result 
concerned the K1 triplet associated with the 18.6124 year astronomical nutation. Fifteen year 
later most of the SGs operated since 1997 in the framework of the Global Geodynamics 
Program (GGP, Crossley et al., 1999) have records longer than 10 years that could be used for 
the same purpose. 
 
1. Introduction 
 
Let us consider the development of the tidal potential due to the Moon (Wenzel, 1997a) 
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with G gravitational constant, M mass of the Moon, r geocentric distance of the point of 
observation, c distance from the geocentre to the Moon, θ geocentric colatitude, δ declination 
of the Moon and H its hour angle. The Pnm are the fully normalized Legendre functions of 
degree n and order m. The order m is associated to the different tidal bands through the hour 
angle. The time variations of the potential are linked to r,δ and H. Expressing these quantities 
as a function of the astronomical arguments describing the motion of the celestial bodies 
inside the solar system, it is possible to develop the tidal potential in a sum of harmonic 
constituents, under the form  
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with D [Newton.m], so called “Doodson constant”, a  mean equatorial radius, Γnm 
normalisation coefficients and Pnm(cosθ) geodetic coefficients. The arguments αi are 
expressed in function of astronomical arguments. If we consider only Moon and Sun, 
neglecting the planets of the solar system, we can write 

si fpeNdpchbsa +++++= 'τα   

with τ mean local lunar time (H+180°), s mean tropic longitude of the Moon, h mean tropic 
longitude of the Sun, p mean tropic longitude of the lunar perigee, N’=-N mean tropic 
longitude of the ascending lunar node changed of sign and ps mean tropic longitude of the 
solar perigee. The angular speed of a tidal wave is completely determined by its argument 
under the form (a,b,c,d,e,f). Among the different development of the tidal potential one 
generally use as standards the TAM1200 potential (Tamura, 1987) and the HW95 catalogue 
(Hartmann and Wenzel, 1995). 

From the tidal potential it is possible to compute the different tidal components. In this 
study we focus on the vertical component of the tidal force i.e. the variation of gravity. The 
Earth body submitted to the tidal forces is deformed and this deformation produces an 
additional change of potential. The global effect on the tidal gravity changes is characterized 
by the so called “amplitude factor”. For a given tidal wave, the amplitude factor δ is defined 
as the ratio A/Aa (Melchior, 1983) of the effective amplitude A with respect to the 
astronomical tide of amplitude Aa. Several theoretical models of the Earth response to the 
tidal forces have been developed in the last decades: Wahr-Dehant-Zschau (Dehant, 1987), 
DDW99 (Dehant et al., 1999), MATH01 (Mathews, 2001). Their results provide the so called 
body tides with amplitude Ath and amplitude factor values δth= Ath/Aa. It is thus possible to 
define the different body tides models  by a vector R(δth.Aa, 0), expressing the fact that the 
body tide is in phase with the astronomical one. The analysis of the observations will provide 
an observed tidal vector Ao(δAa,α), where α is the difference between the observed and the 
astronomical local phases with lag counted as negative. Unhappily it is generally not possible 
to compare directly the observed and body tides vectors as the ocean tides effect is still mixed 
up in the observations. The tidal loading vector L , which takes into account the direct 
attraction of the water masses, the flexion of the ground and the associated change of 
potential, is generally evaluated by performing a convolution integral between the ocean tide 
models and the load Green’s function computed by Farrell (Farrell, 1972). We subtract the 
tidal loading effects L (L,λ) to get the so called “corrected” tidal parameters: amplitude factor 
δc and phase difference αc.  
      Ac(δcAa, αc) = Ao – L  (3) 
which can be directly compared with the body tides models R. 

The Earth response is different for the different degrees of the potential. For W2 the 
recent body tides models agree at the level of a few tenth of percent and these different 
models have been evaluated using tidal gravity observations, mainly superconducting 
gravimeters data provided by the GGP consortium. The DDW99 and MATH01 models agree 
with the observations corrected for the ocean tides loading at the level of 10-3 (Baker and Bos, 
2003; Ducarme et al., 2001, 2002, 2007, 2009).  

 
2. Constrains on the tidal analysis procedure 
 
The analysis of earth tide observations is usually carried out by least squares adjustment. A 
general description of the procedure and of its advantages can be found for example in 
Wenzel 1997b. The goal of the tidal analysis is to determine the so called tidal parameters i.e. 
amplitude factors (ratio between the observed amplitude Ao and the theoretical one Ath)  and 
phase differences (difference between the observed phase αo and the theoretical one αa), for 
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different tidal “wavegroups”. The wavegroup concept was proposed by Venedikov (1961). 
Due to the limited resolution of any analysis technique, the frequency resolution is limited by 
the recording length T. According to the Rayleigh criterion the separation of the waves is 
generally restricted to ∆f ≥ 1/T. However the Rayleigh criterion should be used as a rule of 
thumb only. For the least squares adjustment method, where the frequencies are known 
beforehand, the separation depends on the recording length T and on the signal-to-noise ratio. 
For high signal to noise ratios, as it is the case with SGs, waves with frequency differences ∆f 
< 1/T can be sometimes separated. In any case it is impossible to determine individual tidal 
parameters for all the tidal waves contained in any tidal potential catalogue. Instead, average 
tidal parameters are determined for “wavegroups” containing neighbouring waves. The 
Rayleigh criterion applies in this case on the frequency difference between the main wave of 
two neighbouring wavegroups. It is supposed that the tidal parameters are identical for all the 
waves inside a wavegroup. This assumption is generally not verified as different degrees of 
the potential are mixed inside of the same group. To cope with this problem the usual practice 
is to multiply the theoretical amplitude of the waves which are not belonging to the same 
degree as the main wave of the group by the ratio of the theoretical amplitude factors. For 
example, if the tidal gravity factors for (2,2) and (3,2) terms in (2,2) group are δ2 and δ3 
(Melchior, 1983), the theoretical amplitude of any (3,2) term will be multiplied by  δ3/δ2. If 
the observed tidal factor of the group is δ, the contribution of  a (3,2) term is in fact δ.δ3/δ2≈δ3 
if  δ2≈δ. This approximation is generally valid as the observed and theoretical tidal factors 
agree generally within a few per cent while the discrepancy between the theoretical factors of 
different degrees of the potential are of the order of 10%. Moreover the contribution of the 
components deriving from W2 are much larger than the signal coming from the higher degrees 
of the potential, so that the residual effect becomes generally negligible. This procedure 
should be applied also to the terms generated by W4.  
 
3. First approach of the nodal waves 
 
As a matter of fact the argument of the nodal waves differ only from the argument of their 
closest neighbour by the variable N’ associated to the Lunar node, which has an angular speed 
of 0°.00220641 per hour. According to the Rayleigh criterion, the period required to separate 
such waves is thus 18.6124 years. In section 4 we discuss how it is possible to relax 
considerably this condition. 
Let us consider first the data of the superconducting gravimeter CD021 at station Membach 
(BE). It is one of the longest and most precise series observed with a superconducting 
gravimeter (Hinderer et al., 2007) in the framework of the Global Geodynamics Project 
(GGP, Crossley et al., 1999). The Tables 1 and 2 present the characteristics of the principal 
nodal waves and the tidal factors computed with the ETERNA (Wenzel, 1996) software. It is 
noticed at the first glance that there do not generally exist a pair of nodal waves symmetrical 
with respect to the main tidal constituent. The exceptions are M1, K1 and NO1. NO1- 
(1,0,0,1,-1,0) with an amplitude of  0.7nms-2 is not negligible, but it is located very close to 
M1+ (1,0,0,0,1,0), which has a similar amplitude (Table 2). The difference in angular speed is 
only p-2N’ i.e. 2.29 10-4 deg/hour. The period of commensurability becomes then 179 years! 
We cannot separate both components simultaneously The separation of M1+ becomes possible 
if we keep NO1 and NO1- in one and the same group. Inversely results for NO1- are obtained 
by grouping M1 and M1+. However the precision is low. 
In most of the cases the tidal parameters of the nodal waves agree with those of the main tidal 
constituent within one or two σ (RMS error). The main exceptions are P1 and K1 in the 
diurnal band, M2 in the semi-diurnal band and perhaps M3 in the ter-diurnal one. In the 
diurnal band the amplitude factors are frequency dependent due to the FCN resonance 
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(Ducarme et al., 2007). The slope of the resonance being steeper close to K1 and the nodal 
waves larger we can perhaps get some useful information on the FCN from the K1 triplet. 
Concerning M2 and M3 one can suspect a different resonance of the nodal waves with respect 
to the main tidal constituent in the ocean tides loading. However it is not confirmed by the 
analysis of the ocean tides records at Oostende (BE) between 1945 and 2006 as shown in 
Table 3. 
 
4. K1 (1, 1, 0, 0, 0, 0) and its nodal waves K1- (1, 1, 0, 0,-1, 0) and K1+ (1, 1, 0, 0, 1, 0) 

 
As seen in the previous section, the K1 triplet (Table 1) is especially interesting, being 
submitted to the resonance of the liquid core of the Earth. The amplitude factors of the three 
constituents should differ by 0.1% according to different Earth models (Table 4). The GGP 
data base is incorporating the observations of 26 tidal gravity stations between 1997 and 2010. 
From the point of view of the Rayleigh criterion no series already reaches the 18.6124 year 
data length required for the separation of the nodal waves. Including data prior to GGP the 
series of Brussels (more than 18 years), Cantley (16.5 years) and Membach (14.5 years) 
hardly reach the required time span. Most of the stations however reach a data span larger 
than 10 year. 
To save a maximum of series, we can use the advantages of the VAV04 tidal analysis 
program (Venedikov and Vieira, 2004). The main difference with respect to the more popular 
ETERNA software (Wenzel, 1996) resides in the filtering technique used to separate the tidal 
signal in the spectrum. ETERNA is applying overlapping high pass filters on the original data 
to produce filtered series still including all the complete tidal signal, while VAV04 is applying 
different odd and even filters to separate the tidal bands at different angular speed Ω: D 
(Ω=15°/h), SD (Ω=30°/h), TD (Ω=45°/h), QD (Ω=60°/h) and so on…. Moreover the filter 
length is generally limited to 48h and always applied without overlapping. The least square 
adjustment is applied on these discrete series of filtered data. The main advantage of VAV04 
for the determination of the small nodal waves is the automatic elimination of noisy data 
(Venedikov and Ducarme, 2000) based on a statistical study of the residues of the filtered data 
in the four frequency bands: D (Ω=15°/h), SD (Ω=30°/h), TD (Ω=45°/h) and QD (Ω=60°/h). 
The m.s.d. )(Ωσ  is used to define a threshold level )(ΩσSt  where St  is supposed to be a 
Student coefficient. Venedikov used the classical value 3=St  (the 3 sigma rule). VAV04 
provides also a tool to relax the Rayleigh criterion for the separation of the nodal waves by 
numerical experimentation. To decide if a finer separation is justified we can use the Akaike 
information criterion (AIC, Sakamoto et al., 1986). For a given data set the optimal separation 
corresponds to a minimal value of AIC. After a systematic experimentation we were able to 
separate the nodal waves without degrading the AIC value for series close to 3,500 days or 
9.5 years as a minimum (Table 4). It is only half of the length based on the Rayleigh criterion. 
The separation of the nodal waves is not valid for Bad Homburg and Sutherland as the error 
on K1 is increased by a factor of two after the separation of K1- and K1+. We present here the 
results of 12 GGP stations. 
As seen from Table 1, the nodal wave K1- (1, 1, 0, 0,-1, 0) has a much smaller amplitude than 
the symmetrical wave K1+ (1, 1, 0, 0, 1, 0) and is thus determined with a much lower 
precision. The associated RMS errors on the amplitude factors are of the order of respectively 
0.15% and 0.02%, corresponding to the inverse of the amplitude ratio. K1 and its nodal 
companions correspond to the annual modulation of the meteorological wave S1. the tidal 
factors of K1- is thus much more affected by environmental conditions. It is clearly seen in the 
Brussels results, which is not providing a reliable amplitude factor for K1-, although it is the 
only series longer than 18 years. 
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A direct comparison of the tidal amplitude factors of K1-, K1 and K1+ given in Table 4 with 
the theoretical values is not possible as we did not apply any ocean load correction. As a 
matter of fact we do not have ocean tides models for these nodal waves. We can indeed 
suppose that, inside the K1 group, the ocean load correction is directly proportional to the 
amplitudes of the different waves due to the very close frequencies. This hypothesis is not in 
contradiction with the results of the Oostende tide gauge, given the associated RMS errors 
(Table 3). We decided thus, as a first approximation of the slope of the resonance, to use the 
normalized differences  
ρ- = (δK1

--δK1)/δK1 = δK1
-/δK1 - 1 

and             (4) 
ρ+ = (δK1-δK1

+)/δK1 =1 - δK1
+/δK1. 

It has the advantage to suppress the calibration errors and to reduce drastically the ocean load 
contribution from the result if the load vector L  is proportional to the amplitude of the 
different waves.  
Neglecting other perturbation sources than ocean tides we can write 

Ao = R + L    (5) 
 and derive the two components of K1- and K1 
A-

o(δ -th-.A
-
a + L-cosλ-, L- sinλ-) and  Ao(δth.Aa + Lcosλ, L sinλ) 

 
If  A -

a- = x Aa we state L- = xL, λ- = λ to get for K1- and K1 
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so that we get 

thth δδδ
δ −−

≈  considering thth δδ ≅−  under the square root 

The ocean load contribution is thus largely eliminated from the ratio of the observed 
amplitude factors, which is then close to the ratio of the body tides amplitude factors. 
A similar demonstration is valid for K1+. 
 
5. Discussion of the results 
 
Table 5 presents the relative variations of the amplitude factors inside the K1 triplet using the 
ρ parameter and the corresponding values for different body tides models. We note that the 
non hydrostatic models provide lower values of ρ- and ρ+  than the hydrostatic ones. It is due 
to the shift of the resonance toward longer periods. The same results are graphically displayed 
in Figure 1. 
As expected the standard deviation is much larger on ρ- (0.31%)  than on ρ+ (0.08%). The 

mean value %088.0%262.0
_

±=−ρ  is  not really compatible with any of the models. On the 

contrary the mean value %022.0%113.1
_

±=+ρ  is close to the non hydrostatic models. It 

confirms the results presented in Ducarme et al., 2009 for the corrected amplitude factor δc of 
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the wave O1 and the ratio δc(O1)/δc(K1), using the data of the West European Network 
(WEN). The hydrostatic models are offset by a bit more than the associated RMS error. 
Looking at Figure 1 there is an obvious correlation (r=0.7) between the observed values of  ρ- 
and ρ+. Larger or smaller values of ρ- are preferentially associated with similar values of ρ+, 
the slope of the regression line being close to 3, i.e. the perturbations are three times larger for  
ρ- than for ρ+. It should be noted that correlated extreme values are found also among the 
WEN stations for which the tidal loading is weak in the diurnal band (Ducarme et al., 2009), 
while stations with a large loading, such as Matsushiro and Wuhan, do not show any 
correlation. The perturbations are not due to ocean tides loading but their origin is more likely 
to be found in the environmental noise concentrated on S1, as K1 corresponds to the annual 
modulation of S1. The noise propagation around S1 was already pointed out in Ducarme and 
Melchior, 1998. 
 
6. Conclusions 
 
A strict application of the Rayleigh criterion should limit the separation of the nodal waves to 
series of 18 years minimum. The longest series of superconducting gravimeters participating 
to the GGP consortium are now ranging between 10 and 18 years. It was possible to extract 
successfully the nodal waves for 12 series longer than 3,500 days using the advantages of the 
VAV04 tidal analysis program. Most of the nodal waves do not provide a new insight into 
tidal theory with the notable exception of the K1 triplet. The slope of the FCN resonance 
curve is producing differences in the amplitude factors inside the triplet at the level of 0.1%. 
This effect is clearly seen in our results.  We introduce a parameter ρ± = 1- δK1

±/δK1), free 
from calibration errors and ocean tides loading influence, to express the relative difference 
between K1 and its nodal companions K1- or K1+. The K1- nodal wave has a too small 
amplitude to provide reliable results but the mean relative difference ρ+ between K1 and K1+ 
(0.113%±0.022%) is very close to the values 0.124% and 0.116% predicted respectively by 
the DDW99NH (Dehant et al., 1999) and the MAT01NH  (Mathews, 2001) models. It should 
be worth to introduce the nodal wave K1+ in the determination of the FCN parameters, 
besides O1, P1, K1, PSI1 and PHI1. 
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Table 1: Principal nodal waves derived from the potential of degree 2 (W2). Amplitudes are 
given at 45° latitude 
   a) diurnal waves 
Wave  τ s h p N’ Angular speed 

°/hour 
Ampl. 
nm/s2 

δ 
σ 

α° 
σ° 

origin 

2Q1- 1 -3 0 2 -1 12.85207978 1.48 1.1554 
±.0077 

-0.556 
±.383 

nodal 

2Q1 1 -3 0 2 0 12.85428619 7.87 1.1518 
±.0015 

-0.664 
±.074 

Ellipt. Q1 

σ1- 1 -3 2 0 -1 12.92493343 1.79 1.1481 
±.0065 

-1.320 
±.322 

nodal 

σ1 1 -3 2 0 0 12.92713984 9.49 1.1480 
±.0012 

-0.761 
±.060 

variation O1 

Q1- 1 -2 0 1 -1 13.39645449 11.22 1.1453 
±.0010 

-0.182 
±.050 

nodal 

Q1 1 -2 0 1 0 13.39866089 59.49 1.1469 
±.0002 

-0.212 
±.009 

Ellipt.O1 

O1- 1 -1 0 0 -1 13.94082919 58.62 1.1490 
±.0002 

0.120 
±.001 

nodal 

O1 1 -1 0 0 0 13.94303560 310.73 1.14935 
±.00004 

0.1072 
±.0018 

L declin. 

LK1- 1 0 0 -1 -1 14.48520390 1.63 1.1518 
±.0078 

0.660 
±.386 

nodal 

LK1 1 0 0 -1 0 14.48741031 8.78 1.1523 
±.0015 

0.212 
±.074 

Ellipt. O1 

(NO1-) 1 0 0 -1 1 14.49448753 0.69 1.1700 
±.0148 

1.256 
±.726 

nodal 

NO1 1 0 0 1 0 14.49669393 24.43 1.1526 
±.0006 

0.189 
±.027 

Ellipt. K1m 

NO1+ 1 0 0 1 1 14.49890034 4.90 1.1548 
±.0026 

0.354 
±.128 

nodal 

P1- 1 1 -2 0 -1 14.95672495 1.63 1.1598 
±.0067 

0.821 
±.329 

nodal. 

P1 1 1 -2 0 0 14.95893136 144.55 1.1496 
±.0001 

0.228 
.004 

S declin. 

K1- 1 1 0 0 -1 15.03886223 8.65 1.1435 
±.0013 

0.394 
±.065 

nodal 

K1 1 1 0 0 0 15.04106864 436.80 1.13715 
±.00003 

0.2813 
±.0013 

LS declin. 

K1+ 1 1 0 0 1 15.04327505 59.28 1.1360 
±.0002 

0.310 
±.010 

nodal 

J1 1 2 0 -1  0                 15.58544335 24.44 1.1585 
±.0005 

0.151 
±.022 

Ellipt. K1m 

J1+ 1 2 0 -1 1 15.59008516 4.85 1.1544 
±.0023 

0.283 
±.112 

nodal. 

OO1 1 3 0 0 0 16.13910168 13.36 1.1563 
±.0008 

0.088 
±.041 

3L declin. 

OO1+ 1 3 0 0 1 16.14130809 8.56 1.1558 
±.0012 

0.099 
±.061 

nodal 

NU1 1 4 0 -1 0 16.68347639 2.56 1.1556 
±.0042 

0.377 
±.208 

Ellipt. OO1 

NU1+ 1 4 0 -1 1 16.68568279 1.64 1.1557 
±.0062 

0.206 
±.309 

nodal 
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    b)semi-diurnal waves 
Wave  τ s h p N’ Angular speed 

°/hour 
Ampl. 
nm/s2 

δ 
σ 

α° 
σ° 

origin 

N2- 2 -1 0 1 -1 28.43752313 2.69 1.1739 
±.0029 

3.061 
±.141 

nodal 

N2 2 -1 0 1 1 28.43972953 71.96 1.1723 
±.0001 

3.111 
±.005 

Ellipt. M2 

           
M2- 2 0 0 0 -1 28.98189783 14.02  1.1915 

±..0005 
2.436 
±.025 

nodal. 

M2 2 0 0 0 0 28.98410424 375.80  1.18731 
±.00002 

2.4446 
±.0009 

L princ. 

           
K2 2 2 0 0 0 30.08213728 47.51 1.1939 

±.0002 
1.027 
±.007 

LS decl. 

K2+ 2 2 0 0 1 30.08434369 14.16 1.1950 
±.0005 

1.178 
±.024 

nodal 

           
η2 2 3 0 -1 0 30.62651199 2.66 1.1954 

±.0028 
0.359 
±.136 

Ellipt. K2m 

η2+ 2 3 0 0 1 30.62871839 1.16 1.1926 
±.0065 

-0.193 
±.310 

nodal 

 
 

Table 2: Principal nodal waves derived from the potential of degree 3 (W3) 
   The amplitude is given at 45° latitude 

Wave  τ s h p N’ Angular speed 
°/hour 

Ampl. 
nm/s2 

δ 
σ 

α° 
σ° 

origin 

M1- 1 0 0 0 -1 14.48984571 0.93 1.0866 
±.0123 

1.691 
±.649 

nodal 

M1 1 0 0 0 0 14.49205212 6.28 1.0795 
±.0019 

0.922 
±.010 

L Princ. 

M1+ 1 0 0 0 1 14.49425853 0.81 1.0777 
±.0097 

0.761 
±.517 

nodal 

           
3MK2- 2 -1 0 0 -1 28.43288131 1.10 1.0704 

±.0064 
0.410 
±.342 

nodal 

3MK2 2 -1 0 0 0 28.43508772 6.47 1.0675 
±.0011 

0.093 
±.059 

L decl. 

           
3MO2 2 1 0 0 0 29.53312076 5.97 1.0658 

±.0012 
-0.408 
±.062 

L decl. 

3MO2+ 2 1 0 0 1 29.53532717 1.12  1.0658 
±.0061 

-0.065 
±.329 

nodal 

           
M3- 3 0 0 0 -1 43.47394995 0.29 1.0383 

±.0137 
0.307 
±.758 

nodal 

M3 3 0 0 0 0 43.47615636 5.23 1.0615 
±.0008 

0.461 
±.042 

L Princ. 
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Table 3: Some nodal waves observed by the Oostende tide gage (1945-2006) 
wave Doodson argument Amplitude 

(cm) 
Amplitude factor 

    
K1- 165.545 0.19±0.06 0.68±0.21 

                         K1      165.555 5.662±0.060 0.409±.006 
 K1+ 165.565 0.64±0.05 0.34±0.03 

    
M2- 255.545 6.03±0.04 16.83±0.10 

                        M2 255.555 181.23±0.04 18.885±0.004 
    

M3- 355.545 0.045±0.025 10.1±5.9 
                        M3 355.555 0.921±.0026 11.69±0.33 

 
Table 4 : K1 and its two nodal waves as observed by the GGP network, N number of days 
     ∆∆∆∆(AIC)  : relative diminution of the Akaike Information Criterion after n iterations 

Station N n ∆(AIC) K1
- K1 K1

+ 

   % δ 
σ 

α° 
σ° 

δ 
σ 

α° 
σ° 

δ 
σ 

α° 
σ° 

Brussels 6699 5 -0.16 (1.1338) 0.583 1.13712 0.248 1.1363 0.333 
    ±.0021 ±.108 ±.00004 ±.002 ±.0003 ±.016 
Cantley 5881 3 -0.16 1.1480 0.612 1.14725 0.586 1.1462 0.648 
    ±.0015 ±.074 ±.00003 ±.002 ±.0002 ±.011 
Membach 5938 3 -0.45 1.1408 0.337 1.13716 0.280 1.1358 0.308 
    ±.0011 ±.057 ±.00002 ±.001 ±.0002 ±.008 
Canberra 4450 0 -0,14 1.1299 -0.747 1.12965 -0.831 1.1295 -0.866 
    ±.0018 ±.091 ±.00004 ±.002 ±.0003 ±.0013 
Metsahovi 4905 3 -0.38 1.1485 0.199 1.13998 0.083 1.1374 0.144 
    ±.0019 ±.093 ±.00004 ±.002 ±.0003 ±.0014 
Strasbourg 5024 0 -0.29 1.1387 0.379 1.13695 0.269 1.1355 0.276 
    ±.0014 ±.070 ±.00003 ±.001 ±.0002 ±.010 
Wettzell 4500 0 -1.31 1.1442 0.277 1.13673 0.204 1.1334 0.230 
    ±.0014 ±.072 ±.00003 ±.002 ±.0002 ±.011 
Medicina 5069 3 -0.94 1.1369 0.859 1.13484 0.355 1.1341 0.405 
    ±.0014 ±.070 ±.00003 ±.001 ±.0002 ±.0010 
Matsushiro 4008 3 -0.36 1.1928 0.031 1.18466 -0.068 1.1836 -0.127 
    ±.0021 ±.099 ±.00005 ±.002 ±.0003 ±.0015 
Moxa 3657 3 -0.51 1.1400 0.357 1.13631 0.227 1.1350 0.224 
    ±.0012 ±.058 ±.00003 ±.001 ±.0002 ±.009 
Vienna 3425 0 -0.72 1.1358 0.216 1.13392 0.204 1.1330 0.246 
    ±.0021 ±.106 ±.00005 ±.003 ±.0003 ±.0016 
Wuhan 3319 0 -0.60 1.1548 -0.634 1.15350 -0.464 1.1528 -0.570 
    ±.0032 ±.160 ±.00006 ±.003 ±.0005 ±.024 
theory Wahr-Dehant-Zschau 1.13326  1.13189  1.13032  
 DDW99 H 1.13330  1.13197  1.13043  
 DDW99 NH 1.13530  1.13405  1.13264  
 Mathews NH  1.13610  1.13494  1.13361  
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Table 5: normalised variations of the amplitude factors around K1 

Station Number of days ρ- = (δK1
--δK1)/δK1 
% 

ρ+ = (δK1-δK1
+)/δK1 

% 
Brussels* 6699 -0.292 0.072 
Cantley 5881 0.065 0.092 
Membach* 5938 0.320 0.120 
Canberra 4450 0.022 0.013 
Metsahovi 4905 0.747 0.226 
Strasbourg* 5024 0.154 0.128 
Wettzell* 4500 0.657 0.293 
Medicina* 5069 0.181 0.065 
Matsushiro 4008 0.687 0.089 
Moxa* 3657 0.325 0.115 
Vienna* 3425 0.166 0.081 
Wuhan 3319 0.113 0.061 
 mean 0.262±±±±.088 0.113±±±±.022 
 Standard deviation  0.306 0.078 
    
Theory Wahr-Dehant-Zschau 0.121 0.139 

 DDW99 H 0.117 0,136 
 DDW99 NH 0.110 0,124 
 Mathews NH 0.102 0.116 

* stations belonging to the West European Network (Ducarme et al., 2009) 
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